Chapter 1
Exercices Sheet 1

1.1 Exercises

1.1. Let (2,.7,{ %, k € T},P) be a filtered probability space and {(Xy, %), k €
T} be an adapted stochastic process. Show that the following properties are equiva-
lent.

(i) {(Xx, %), k € T} is a Markov chain.
(ii) Forevery k € T and bounded o (X, j > k)-measurable random variable Y,

E[YLQ\]J = E[Y|Xk} P —a.s. (11)

(iii) For every k € T, bounded o(X;,j > k)-measurable random variable ¥ and
bounded 9’,5‘ -measurable random variable Z,

E[YZ|X] =E[Y|X]E[Z|X] P —as. (1.2)

1.2. Let {Z,, n € N} be an i.i.d. sequence of random variables independent of Xp.
Define recursively X, = ¢X,,_1 + Z,.

1. Show that {X,, n € N} defines a time-homogenous Markov chain.

2. Write its Markov kernel in the cases where (i) Z; is a Bernoulli random variable
with probability of success 1/2 and (ii) the law of Z; has a density ¢ with respect
to the Lebesgue measure.

1.3. Let a be a probability on N, that is a sequence {a(n), n € N} such that a(n) > 0
foralln € Nand Y7 ja(k) = 1. Let P be a Markov kernel on X x 2Z". The sampled
kernel K, is defined by

K, = Z a(n)P" . (1.3)
n=0
Let {a(n), n € N} and {b(n), n € N} be two sequences of real numbers. We

denote by {a*b(n), n € N} the convolution of the sequences a and b defined, for
n € N by



2 1 Exercices Sheet 1

n

axb(n) =Y a(k)b(n—k).
k=0
Show that if @ and b are probabilities on N, then the sampled kernels K, and K}
satisfy the generalized Chapman-Kolmogorov equation

Koy = KaK) . (1.4)

1.4. Let P be a Markov kernel on X x 2" and v be a probability measure on
(X, Z"). Show that an X-valued stochastic process {X, k € N} is a homogeneous
Markov chain with kernel P and initial distribution v if and only if the distribution
of (Xo,...,Xx) is v@ P for all k € N.
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Solutions to exercises

1.1 [@)]=[GD)] Fix k € T and consider the property (where F,(X) is the set of
bounded measurable functions),

Zy): (L) holds for all Y =[T}_( g;(Xx+,) where g; € F, (X) for all j > 0.

() is true. Assume that (Z7,) holds and let {g;, j € N} be a sequence of functions
in F, (X). The Markov property yields

E[g0(Xk) - &n(Xksn)&nt1 Xiint1)| Fi]

=E[E[80(Xk)- - 8n(Xksn)&nt1 Xktnt1)| Ficyn]| Fi]
=E[g0(Xk) - - - 8n(Xitn)E [8n+1 Kicn+1)| Fen] | Fi]
=E[g0(Xk) - - - 8n(Xitn)E [8n+1 Kin+ 1) Xin] | Fi] -

The last term in the product being a measurable function of X, 4, the induction
assumption (&7,) yields

E[g0o(Xk) - - &n(Xitn)8n+1Xirnr1)| Fi]

(g0 (Xk) -8 Xirn)E [ 8n1 (Kt 1) | Xirn] | X
[80(Xk) - - 80 (Xkn)E [€nt1 Kt 1) Frn] | Xi]
[go(

20(Xk) - - - 8n(Xktn) gnt1 K1) Xa]

80
E
E
E

which proves (£, 1). Therefore, (£?,) is true for all n € N.
Consider the set

H={YeoX;,j>k :E[Y|Z]=E[Y|X] P—as.} .

It is easily seen that 7 is a vector space. In addition, if {¥;, n € N} is an increasing
sequence of nonnegative random variables in 7 and if Y = lim,_,« Y;, is bounded,
then by the monotone convergence theorem for conditional expectations,

E[Y|.#] = imE[Y,| %] = imE[,|X] =E[Y|X] P-as.

By the monotone class theorem, the space .7 contains all (X}, j > k) measurable
random variables.

[GD] = If Y is a bounded o(X;, j > k)-measurable random variable and Z is
a bounded .%; measurable random variable, an application of [(i1)] yields

E[YZ| Z] =ZE[Y|Z] =ZE[Y|X] P —as.
Thus,

E[YZ|X| =E[E[YZ|.Z]|X] = E[ZE [Y[X]| X,]
_E[ZIXJE[Y|X] P-as.
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= [@)] If Z is bounded and .%;-measurable, we obtain

E[f(Xi+1)Z] = E[E [ f(Xi11)Z| Xi]]
=E[E[fX )| X E[Z|X]] = E[E [ f(Xks1)| Xi] Z] -

This proves
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