Chapter 1 Exercices Sheet 1

1.1 Exercises

1.1. Let $(\Omega, \mathscr{F}, \{\mathscr{F}_k, k \in T\}, \mathbb{P})$ be a filtered probability space and $\{(X_k, \mathscr{F}_k), k \in T\}$ be an adapted stochastic process. Show that the following properties are equivalent.

- (i) $\{(X_k, \mathscr{F}_k), k \in T\}$ is a Markov chain.
- (ii) For every $k \in T$ and bounded $\sigma(X_j, j \ge k)$ -measurable random variable Y,

$$\mathbb{E}\left[Y|\mathscr{F}_k\right] = \mathbb{E}\left[Y|X_k\right] \qquad \mathbb{P}-\text{a.s.} \tag{1.1}$$

(iii) For every $k \in T$, bounded $\sigma(X_j, j \ge k)$ -measurable random variable *Y* and bounded \mathscr{F}_k^X -measurable random variable *Z*,

$$\mathbb{E}\left[YZ|X_k\right] = \mathbb{E}\left[Y|X_k\right] \mathbb{E}\left[Z|X_k\right] \qquad \mathbb{P} - \text{a.s.}$$
(1.2)

1.2. Let $\{Z_n, n \in \mathbb{N}\}$ be an i.i.d. sequence of random variables independent of X_0 . Define recursively $X_n = \phi X_{n-1} + Z_n$.

- 1. Show that $\{X_n, n \in \mathbb{N}\}$ defines a time-homogenous Markov chain.
- 2. Write its Markov kernel in the cases where (i) Z_1 is a Bernoulli random variable with probability of success 1/2 and (ii) the law of Z_1 has a density q with respect to the Lebesgue measure.

1.3. Let *a* be a probability on \mathbb{N} , that is a sequence $\{a(n), n \in \mathbb{N}\}$ such that $a(n) \ge 0$ for all $n \in \mathbb{N}$ and $\sum_{k=0}^{\infty} a(k) = 1$. Let *P* be a Markov kernel on $X \times \mathscr{X}$. The sampled kernel K_a is defined by

$$K_a = \sum_{n=0}^{\infty} a(n) P^n .$$
(1.3)

Let $\{a(n), n \in \mathbb{N}\}$ and $\{b(n), n \in \mathbb{N}\}$ be two sequences of real numbers. We denote by $\{a * b(n), n \in \mathbb{N}\}$ the convolution of the sequences *a* and *b* defined, for $n \in \mathbb{N}$ by

1 Exercices Sheet 1

$$a * b(n) = \sum_{k=0}^{n} a(k)b(n-k) .$$

Show that if *a* and *b* are probabilities on \mathbb{N} , then the sampled kernels K_a and K_b satisfy the generalized Chapman-Kolmogorov equation

$$K_{a*b} = K_a K_b . (1.4)$$

1.4. Let *P* be a Markov kernel on $X \times \mathscr{X}$ and *v* be a probability measure on (X, \mathscr{X}) . Show that an X-valued stochastic process $\{X_k, k \in \mathbb{N}\}$ is a homogeneous Markov chain with kernel *P* and initial distribution *v* if and only if the distribution of (X_0, \ldots, X_k) is $v \otimes P^{\otimes k}$ for all $k \in \mathbb{N}$.

1.1 Exercises

Solutions to exercises

1.1 (i) \Rightarrow (ii) Fix $k \in T$ and consider the property (where $\mathbb{F}_b(X)$ is the set of bounded measurable functions),

 (\mathscr{P}_n) : (1.1) holds for all $Y = \prod_{j=0}^n g_j(X_{k+j})$ where $g_j \in \mathbb{F}_b(X)$ for all $j \ge 0$.

 (\mathscr{P}_0) is true. Assume that (\mathscr{P}_n) holds and let $\{g_j, j \in \mathbb{N}\}$ be a sequence of functions in $\mathbb{F}_b(X)$. The Markov property yields

$$\begin{split} & \mathbb{E}\left[g_0(X_k)\dots g_n(X_{k+n})g_{n+1}(X_{k+n+1})|\mathscr{F}_k\right] \\ & = \mathbb{E}\left[\mathbb{E}\left[g_0(X_k)\dots g_n(X_{k+n})g_{n+1}(X_{k+n+1})|\mathscr{F}_{k+n}\right]|\mathscr{F}_k\right] \\ & = \mathbb{E}\left[g_0(X_k)\dots g_n(X_{k+n})\mathbb{E}\left[g_{n+1}(X_{k+n+1})|\mathscr{F}_{k+n}\right]|\mathscr{F}_k\right] \\ & = \mathbb{E}\left[g_0(X_k)\dots g_n(X_{k+n})\mathbb{E}\left[g_{n+1}(X_{k+n+1})|X_{k+n}\right]|\mathscr{F}_k\right]. \end{split}$$

The last term in the product being a measurable function of X_{n+k} , the induction assumption (\mathcal{P}_n) yields

$$\begin{split} & \mathbb{E} \left[g_0(X_k) \dots g_n(X_{k+n}) g_{n+1}(X_{k+n+1}) | \mathscr{F}_k \right] \\ &= \mathbb{E} \left[g_0(X_k) \dots g_n(X_{k+n}) \mathbb{E} \left[g_{n+1}(X_{k+n+1}) | X_{k+n} \right] | X_k \right] \\ &= \mathbb{E} \left[g_0(X_k) \dots g_n(X_{k+n}) \mathbb{E} \left[g_{n+1}(X_{k+n+1}) | \mathscr{F}_{k+n} \right] | X_k \right] \\ &= \mathbb{E} \left[g_0(X_k) \dots g_n(X_{k+n}) g_{n+1}(X_{k+n+1}) | X_k \right] , \end{split}$$

which proves (\mathscr{P}_{n+1}) . Therefore, (\mathscr{P}_n) is true for all $n \in \mathbb{N}$. Consider the set

$$\mathscr{H} = \{Y \in \boldsymbol{\sigma}(X_j, j \ge k) : \mathbb{E}[Y|\mathscr{F}_k] = \mathbb{E}[Y|X_k] \ \mathbb{P} - \mathrm{a.s.}\}.$$

It is easily seen that \mathscr{H} is a vector space. In addition, if $\{Y_n, n \in \mathbb{N}\}$ is an increasing sequence of nonnegative random variables in \mathscr{H} and if $Y = \lim_{n \to \infty} Y_n$ is bounded, then by the monotone convergence theorem for conditional expectations,

$$\mathbb{E}\left[Y|\mathscr{F}_{k}\right] = \lim_{n \to \infty} \mathbb{E}\left[Y_{n}|\mathscr{F}_{k}\right] = \lim_{n \to \infty} \mathbb{E}\left[Y_{n}|X_{k}\right] = \mathbb{E}\left[Y|X_{k}\right] \qquad \mathbb{P}-\text{a.s.}$$

By the monotone class theorem, the space \mathscr{H} contains all $\sigma(X_j, j \ge k)$ measurable random variables.

(ii) \Rightarrow (iii) If *Y* is a bounded $\sigma(X_j, j \ge k)$ -measurable random variable and *Z* is a bounded \mathscr{F}_k measurable random variable, an application of (ii) yields

$$\mathbb{E}\left[YZ|\mathscr{F}_k\right] = Z\mathbb{E}\left[Y|\mathscr{F}_k\right] = Z\mathbb{E}\left[Y|X_k\right] \qquad \mathbb{P}-\text{a.s.}$$

Thus,

$$\mathbb{E}\left[YZ|X_k\right] = \mathbb{E}\left[\mathbb{E}\left[YZ|\mathscr{F}_k\right]|X_k\right] = \mathbb{E}\left[Z\mathbb{E}\left[Y|X_k\right]|X_k\right]$$
$$= \mathbb{E}\left[Z|X_k\right]\mathbb{E}\left[Y|X_k\right] \qquad \mathbb{P}-\text{a.s.}$$

(iii) \Rightarrow (i) If Z is bounded and \mathscr{F}_k -measurable, we obtain

$$\mathbb{E}\left[f(X_{k+1})Z\right] = \mathbb{E}\left[\mathbb{E}\left[f(X_{k+1})Z|X_k\right]\right]$$
$$= \mathbb{E}\left[\mathbb{E}\left[f(X_{k+1})|X_k\right]\mathbb{E}\left[Z|X_k\right]\right] = \mathbb{E}\left[\mathbb{E}\left[f(X_{k+1})|X_k\right]Z\right].$$

This proves (i).