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Exercise 1 (A classical optimization property. ) Let h(β) = (β − u)2 + c|β| where c ⩾ 0,
u ∈ R∗ and β ∈ R.

1. Show that there exists a unique minimum for h that is attained on some β⋆ ∈ R.

2. Deduce that

β⋆ = u

(
1− c

2|u|

)+

Solution.

1. The function h is strictly convex and limβ→±∞ |h(x)| = ∞. This implies that h admits a unique minimizer β⋆.

2. Case 1 β⋆ ̸= 0, in which case h′(β⋆) = 0. This implies 2(β⋆−u)+csgn(β⋆) = 0. Therefore 2u = sgn(β⋆) (2|β⋆|+ c),
which implies sgn(u) = sgn(β⋆). Therefore 2(β⋆ −u)+ csgn(u) = 0 from which we deduce β⋆ = u

(
1− c

2|u|

)
.

Using again sgn(u) = sgn(β⋆), we deduce 1− c
2|u| ⩾ 0 and finally,

β⋆ = u

(
1−

c

2|u|

)+

Case 2 β⋆ = 0. In this case, for all β ̸= 0, h(β) ⩾ h(0) = u2, which is equivalent to β2−2βu+ c|β| ⩾ 0. Dividing by
|β| and letting β → 0, we get −2usgn(β) + c ⩾ 0 which in turn implies −2|u|+ c ⩾ 0. This shows 1− c

2|u| ⩽ 0

and we therefore have again :

β⋆ = 0 = u

(
1−

c

2|u|

)+

Exercise 2 (Elastic-Net) Let Y ∈ Rn and X = [X1, . . . ,Xp] ∈ Rn×p. The Elastic-Net estimator
involves both a ℓ2 and a ℓ1 penalty. It is defined for λ ⩾ 0 and µ ⩾ 0 by

β̂λ,µ ∈ argmin
β∈Rp

L(β) with L(β) = ∥Y −Xβ∥2 + λ∥β∥2 + µ|β|ℓ1 .

In the equation above, we have used the notation : ∥β∥2 =
∑p

i=1 β
2
i and |β|ℓ1 =

∑p
i=1 |βi|. In the following,

we assume that the columns of X have norm 1, that is, X′
iXi = 1 for any i ∈ [1 : p].

1. Let j ∈ [1 : p]. Define Rj = X′
j

(
Y −

∑
k: k ̸=j βkXk

)
. Writing Xβ =

∑p
i=1 βiXi, show that

L(β) = β2
j (1 + λ)− 2βjRj + µ|βj |+Hj((βk)k∈[1:p]\{j})

where Hj((βk)k∈[1:p]\{j}) does not depend on βj .
Solution.

We have

L(β) =

∥∥∥∥∥Y −
p∑

i=1

βiXi

∥∥∥∥∥
2

+ λ

p∑
i=1

β2
i + µ

n∑
i=1

|βi|

= β2
j X′

jXj︸ ︷︷ ︸
1

−2βj X
⊤
j

(
Y −

∑
k: k ̸=j

βkXk

)
︸ ︷︷ ︸

Rj

+λβ2
j + µ|βj |+Hj((βk)k∈[1:p]\{j})

which completes the proof.

2. Using Exercise 1, prove that the minimum of βj → L(β1, . . . , βj , . . . , βp) is reached at some β∗
j and

give the expression of β∗
j with respect to Rj .

Solution.
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Write

L(β) = β2
j (1 + λ)− 2βjRj + µ|βj |+Hj((βk)k∈[1:p]\{j})

= (1 + λ)

(
β2
j − 2βj

Rj

1 + λ
+

µ

1 + λ
|βj |
)

++Hj((βk)k∈[1:p]\{j})

= (1 + λ)

((
βj −

Rj

1 + λ

)2

+
µ

1 + λ
|βj |
)

+ H̃j((βk)k∈[1:p]\{j})

Applying the first exercise with u =
Rj

1+λ
and c = µ

1+λ
, we get that L(β) is minimized at

β∗
j =

Rj

1 + λ

(
1−

µ

2|Rj |

)
+

3. What algorithm seems reasonable to you in order to approximate the Elastic-Net estimator ?
Solution.

You can for example choose an index j uniformly in {1, . . . , p} and then use the update formula at Question 2 to get
the new value for βj .

Exercise 3 Let Y ∈ Rn and X = [X1, . . . ,Xp] ∈ Rn×p. Define X(0) = [X1, . . . ,Xp−1] ∈ Rn×(p−1). We
assume that rank(X) = p, and Y = Xβ + ϵ where ϵ ∼ N (0, σ2In).

Consider the following Hypothesis :

H0 : βp = 0 versus H1 : βp ̸= 0

The aim to this exercise is to show that the Fisher Test (or F -test) associated with the statistic F =
∥Ŷ−Ŷ(0)∥2

∥Y−Ŷ ∥2/(n−p)
where Ŷ(0) = PX(0)

Y is the orthogonal projection of Y on I(X(0)) is equivalent to the Student
test associated to the test statistic :

T =
β̂p

σ̂ ×
√
(X′X)−1

pp

where σ̂2 = ∥Y − Ŷ ∥2/(n− p)

Define .

1. According to the course, what is the distribution of T under H0 ? (No proof is needed).
Solution.

According to the course, T ∼ t(n− p).

2. According to the course, what is the distribution of F under H0 ? (No proof is needed).
Solution.

According to the course, F ∼ F(1, n− p).

3. Show that PX(0)
(Y − Ŷ ) = 0.

Solution.

Y − Ŷ is orthogonal to I(X). But I(X(0)) ⊂ I(X). Hence, Y − Ŷ ∈ I(X(0))
⊥, which implies that PX(0)

(Y − Ŷ ) = 0.

4. Deduce that Ŷ(0) = PX(0)
(Xβ̂).

Solution.
Hence,

Ŷ(0) = PX(0)
(Y ) = PX(0)

(Ŷ ) = PX(0)
(Xβ̂)

5. Using that Xβ̂ =
∑p

i=1 β̂iXi, deduce that Ŷ − Ŷ(0) = β̂p(Xp − PX(0)
(Xp)).

Solution.
Hence,

Ŷ − Ŷ(0) = Xβ̂ − PX(0)
(Xβ̂) =

p∑
i=1

β̂iXi −
p∑

i=1

β̂iPX(0)
(Xi) =

p∑
i=1

β̂i

[
Xi − PX(0)

(Xi)
]

but PX(0)
(Xi) = Xi for any i ∈ [1 : p − 1]. After cancelling the terms for i ∈ [1 : p − 1], it remains Ŷ − Ŷ(0) =

β̂pXp − β̂pPX(0)
(Xp).
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6. Deduce that F =
β̂2
p

σ̂2α where α is a real number that you will express.
Solution.

Using the previous question,

F =
∥Ŷ − Ŷ(0)∥2

σ̂2
=

β̂2
pX

′
p(Id− PX(0)

)2(Xp)

σ̂2
=

β̂2
p

σ̂2
X′

p(Id− PX(0)
)Xp

since PX(0)
= P ′

X(0)
= P 2

X(0)
. Hence, α = X′

p(Id− PX(0)
)Xp.

7. Writing X′X =

(
X′

(0)X(0) X′
(0)Xp

X′
pX(0) X′

pXp

)
, we admit (without proof) that

(X′X)−1
pp = (X′

pXp −X′
pX(0)(X

′
(0)X(0))

−1X′
(0)Xp)

−1

Deduce that F = h(T ) where h : R → R is a function that you will express explicitely.
Solution.

Note that

(X′X)−1
pp = (X′

pXp −X′
pX(0)(X

′
(0)X(0))

−1X′
(0)Xp)

−1 = (X′
p(Id− PX(0)

)Xp)
−1 = α−1

Combining with the previous question, F = T 2 = h(T )

8. Prove the following assertion : if T follows a Student distribution with n− p degrees of freedom, show
that T 2 follows a Fisher distribution Fi,j and express i and j in terms of n− p.
Solution.

If U ∼ N(0, 1) and V ∼ χ2(n− p) such that U and V are independent then, T has the same law as

S = U/
√

V/(n− p) ∼ t(n− p)

Then, S2 = U2

V/(n−p)
has the same law as T 2 and U2 ∼ χ2(1), V ∼ χ2(n−p) anc U2 and V are independent. Hence,

S2 and hence T 2 follows the distribution F1,n−p.

Exercise 4 In this exercise, we consider iid observations (Xi, Yi)1⩽i⩽n where Yi takes values in {0, 1} and
Xi takes values in Rd. For a given x ∈ Rd, we will consider the following classifier : ĥn(x) = Yϕn(x) where

ϕn(x) = argmini∈[1:n]∥x−Xi∥

In words, ϕn(x) is the index of the nearest neighbor of x among the data set {Xi; i ∈ [1 : n]}. In all the
exercise, we consider a couple of random variable (X,Y ) with the same law as (Xi, Yi) for any i ⩾ 1. And to
avoid any ambiguity in the definition of the index ϕn(X) we assume that with probability 1, all the ∥X −Xi∥
for any i ∈ N are strictly different.

Recall that the Bayes optimal classifier is defined by

h⋆(X) =

{
1 if P(Y = 1|X) > P(Y = 0|X)

0 otherwise

and recall that defining η(X) = P(Y = 1|X) and r⋆(X) = min(η(X), 1− η(X)), we have

R⋆ = P(Y ̸= h⋆(X)) = E[r⋆(X)] ⩽ P(Y ̸= h(X))

for any other classifier h : Rd → {0, 1}. The aim of this exercise is to show the bound

R⋆ ⩽ lim
n→∞

P(Y ̸= ĥn(X)) ⩽ 2R⋆(1−R⋆)

Define X(n) = Xϕn(X) the nearest neighbor of X among the set {(Xi); i ∈ [1 : n]}. We admit that,
almost-surely,

lim
n→∞

X(n) = X

and we assume that η is continuous, so that limn→∞ η(X(n)) = η(X).
1. Show that r⋆(X)(1− r⋆(X)) = η(X)(1− η(X)).

Solution.
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If η(X) ⩽ 1/2, then r⋆(X) = η(X) and r⋆(X)(1− r⋆(X)) = η(X)(1− η(X)).
If η(X) > 1/2, then r⋆(X) = 1− η(X) and r⋆(X)(1− r⋆(X)) = η(X)(1− η(X)).

2. Show that for any i ∈ [1 : n], we have almost surely,

P(Y = 0, Yi = 1, ϕn(X) = i|X,X1:n) = (1− η(X))η(Xi)1{ϕn(X)=i}

Solution.
We have

P(Y = 0, Yi = 1, ϕn(X) = i|X,X1:n) = E
(
1Y =01Yi=11ϕn(X)=i|X,X1:n

)
= E(1Y =0|X)E(1Yi=1|Xi)1{ϕn(X)=i}

= (1− η(X))η(Xi)1{ϕn(X)=i}

3. Noting that almost-surely, η(X(n)) =
∑n

i=1 η(Xi)1{ϕn(X)=i}, deduce that, almost-surely,

P(Y = 0, ĥn(X) = 1|X,X1:n) = (1− η(X))η(X(n)),

Solution.

P(Y = 0, ĥn(X) = 1|X,X1:n) =

n∑
i=1

P(Y = 0, Yi = 1, ϕn(X) = i|X,X1:n)

=

n∑
i=1

(1− η(X))η(Xi)1{ϕn(X)=i}

= (1− η(X))η(X(n))

4. In the same way, show that

P(Y = 1, ĥn(X) = 0|X,X1:n) = η(X)(1− η(X(n))),

Solution.
This is a simple adapatation from the two previous questions.

5. Using that if (Zn)n∈N is a family of bounded random variables, converging almost surely to Z, then
limn→∞ E[Zn] = E[Z], show that

lim
n→∞

P(Y ̸= ĥn(X)) = 2E[η(X)(1− η(X))]

Solution.
We have

P(Y ̸= ĥn(X)) = E[P(Y = 0, ĥn(X) = 1|X,X1:n)] + E[P(Y = 1, ĥn(X) = 0|X,X1:n)]

= E[η(X(n))(1− η(X))] + E[η(X)(1− η(X(n)))] → 2E[η(X)(1− η(X))]

where we have used that 0 ⩽ η(X(n))(1 − η(X)) ⩽ 1 and limn→∞ η(X(n))(1 − η(X)) = η(X)(1 − η(X)) almost
surely. And the same reasoning holds for the second expectation E[η(X)(1− η(X(n)))].

6. Deduce that
lim

n→∞
P(Y ̸= ĥn(X)) = 2E[r⋆(X)(1− r⋆(X))]

Solution.
The results holds immediately from the previous question and the first question.

7. Deduce that
lim
n→∞

P(Y ̸= ĥn(X)) ⩽ 2R⋆(1−R⋆)

Solution.
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From the previous question,

lim
n→∞

P(Y ̸= ĥn(X)) = 2E[r⋆(X)(1− r⋆(X))]

= 2
[
E[r⋆(X)]− E[r⋆(X)2]

]
⩽ 2

[
E[r⋆(X)]− E2[r⋆(X)]

]
= 2R⋆(1−R⋆)

8. Conclude.
Solution.

Since ĥn is a classifier, we also have
R⋆ ⩽ P(Y ̸= ĥn(X))

Combining with the previous question, we finally get

R⋆ ⩽ lim
n→∞

P(Y ̸= ĥn(X)) ⩽ 2R⋆(1−R⋆)
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