REGRESSION AND CLASSIFICATION, EMINES. Ezamination, 2024. 3 hours

EXERCISE 1 (A CLASSICAL OPTIMIZATION PROPERTY. ) Let h(B) = (8 — u)? + ¢|3| where ¢ > 0,
u €R* and 5 € R.

1. Show that there exists a unique minimum for h that is attained on some * € R.
2. Deduce that N
c
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Solution.

1. The function h is strictly convex and limg_, + |h(x)| = co. This implies that h admits a unique minimizer 5*.
2. Case 1 B* #0, in which case h/(8*) = 0. This implies 2(8* —u)+csgn(8*) = 0. Therefore 2u = sgn(8*) (2|8*| + ¢),

c

which implies sgn(u) = sgn(8*). Therefore 2(8* — u) + csgn(u) = 0 from which we deduce 8* = u (1 — W)

Using again sgn(u) = sgn(8*), we deduce 1 — 2|Cu| > 0 and finally,
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Case 2 8* = 0. In this case, for all 3 # 0, h(B) > h(0) = u2, which is equivalent to 82 — 2B8u+c|3| > 0. Dividing by
|B| and letting 8 — 0, we get —2usgn(B) + ¢ > 0 which in turn implies —2|u| 4 ¢ > 0. This shows 1 — ﬁ <0
and we therefore have again :

EXERCISE 2 (ELASTIC-NET) LetY € R” and X = [Xy,...,X,] € R"*P. The Elastic-Net estimator
involves both a /2 and a /! penalty. It is defined for A > 0 and x> 0 by

B € argmin £(B) with  L(8) = [[Y = XBI*+ AIBI* + w8l
cRP

In the equation above, we have used the notation : ||8]|? = >"F_, 82 and |8]n = Y_7_, |8i]. In the following,
we assume that the columns of X have norm 1, that is, forany i € [1: p].

1. Let j € [1:p]. Define R; = X (Y = Dk ki ﬁka) . Writing X8 = Y% | 8; X, show that

L(B) = BF(1+ A) — 28;R; + plBi| + Hi ((Br)kepph(i})

where H;((Br)re[1:p)\{;}) does not depend on j3;.
Solution.

We have
2 p n
A B2+ > 18
i=1 i=1

=BIX[X; —28; X/ (Y - > ﬂkxk) B3 + ul Bl + Hi ((Br)kerph {5})
~—— k:k#j

P
L(B) = HY - BiX
i=1

1

R;

which completes the proof. O

2. Using Exercise 1, prove that the minimum of 8; — L(B1,...,8;,...,B,) is reached at some 3 and
give the expression of 37 with respect to ;.
Solution.



Write
L(B) = B3(1+ ) =28 R; + plB;| + Hi (Be)keppp{i})

R
:(1+A)(,6’§-—2,8jl+]A

R; \?2
=(1+2) <(ﬁj -7 J:)\) T /\5]> Hi((Br)kepph\ (1)

Applying the first exercise with v = llij/\ and c = 1_%\, we get that £(3) is minimized at

%= 15 (1 )
T 14 2(R;|)

T Alﬁgl) + +H;((Br)kenp\{})

|
3. What algorithm seems reasonable to you in order to approximate the Elastic-Net estimator 7
Solution.
You can for example choose an index j uniformly in {1,...,p} and then use the update formula at Question 2 to get
the new value for 3;.

EXERCISE 3 Let Y € R" and X = [X4,...,X,] € R"*?. Define X() = [X1,..., X, 1] € R~ We
assume that rank(X) = p, and Y = X3 + € where ¢ ~ N (0, 0%1,,).
Consider the following Hypothesis :

Hy:8,=0 versus Hp:f(,#0

The aim to this exercise is to show that the Fisher Test (or F-test) associated with the statistic F' =
Y Yo ll*
Y =Y|2/(n—p) (o)
test associated to the test statistic :

where Y(O) = Px, Y is the orthogonal projection of Y on Z(Xq)) is equivalent to the Student

T= b where 62 =||Y —Y|]?/(n —p)
(X X)pp
Define .
1. According to the course, what is the distribution of T" under Hy ? (No proof is needed).
Solution.
| According to the course, T' ~ t(n — p). |

2. According to the course, what is the distribution of F' under Hy? (No proof is needed).

Solution.
1 According to the course, F' ~ F(1,n — p). |
3. Show that Px , (Y —Y) = 0.
Solution.
I Y —Y is orthogonal to Z(X). But I(X(0y) C Z(X). Hence, Y-Ye I(X(O))L, which implies that Px o (Y -Y)=o0.
O
4. Deduce that Y(O) = Px,, (X3).
Solution.
Hence R . N
Yio) = Px) (Y) = Px o, (Y) = Px g, (X5)
O
5. Using that X3 = P 3:X;, deduce that ¥ — Y(O) = B,(X, — Px o) (Xp)).
Solution.
Hence,
A A ~ p P ~
¥ = Yoy = X8 = Pg) (X8) = 3 BXs = 3 P (%) Zﬂz [Xi = Px ) (X)]
= i=1
but PX(O) (X;) = X; for any i € [1 : p— 1]. After cancelling the terms for i € [1 : p — 1], it remains ¥ — ?'(0) =
BPXP - BPPX(U) Xp). O



R2
6. Deduce that F' = %a where « is a real number that you will express.
Solution.

Using the previous question,

IV = VioylI>  BpX,(Id — Px))?*(Xp)
52 N 52

since PX(O) = P>’((0> = P)Q((O). Hence, a = X;(Id - PX(O))XP' O

Xzo)X(O) X/(O)XP
/ /

XpX(O) Xpo

B x
= 5 X} (Id— Px )Xy

7. Writing X'X = ( ) we admit (without proof) that

(X'X),) = (X)X, — xggx(o)(X’(O)x(o))*1X’(0)x,,)*1

Deduce that F' = h(T) where h : R — R is a function that you will express explicitely.

Solution.
Note that
(X' X)t = (X)X, — X}, X 0) (X o) X(0)) ™ Xy Xp) ™ = (X}, (Id = P ) X,) P = ™!
Combining with the previous question, F' = T2 = h(T) O

8. Prove the following assertion : if T follows a Student distribution with n — p degrees of freedom, show
that 72 follows a Fisher distribution F; ; and express i and j in terms of n — p.
Solution.

If U ~ N(0,1) and V ~ x2(n — p) such that U and V are independent then, T has the same law as
S=U/VV/(n—p)~tn-p)

Then, S2 = %2,;,) has the same law as T2 and U2 ~ x2(1), V ~ x2(n—p) anc U? and V are independent. Hence,
S2 and hence T2 follows the distribution Flin—p- O

EXERCISE 4  In this exercise, we consider iid observations (X;, Y;)1<i<n where Y; takes values in {0,1} and
X, takes values in R?. For a given = € R?, we will consider the following classifier : h,(z) = Yy (,) where

¢n(£) = argminie[l:n]”‘r - XZH

In words, ¢, (x) is the index of the nearest neighbor of x among the data set {X;; i € [1 : n|}. In all the
exercise, we consider a couple of random variable (X,Y") with the same law as (X;,Y;) for any ¢ > 1. And to
avoid any ambiguity in the definition of the index ¢,,(X) we assume that with probability 1, all the || X — X;||
for any i € N are strictly different.

Recall that the Bayes optimal classifier is defined by

B (X) = 1 ifPY =1|X)>PY =0|X)
10 otherwise

and recall that defining n(X) =P(Y = 1|X) and *(X) = min(n(X),1 — n(X)), we have
R* = P(Y # h*(X)) = E[r"(X)] < P(Y £ h(X))
for any other classifier 4 : R? — {0,1}. The aim of this exercise is to show the bound

R* < lim P(Y # h,(X)) < 2R*(1 — R*)
n— oo
Define X(,) = X,,(x) the nearest neighbor of X among the set {(X;); i € [l : n]}. We admit that,
almost-surely,
lim X, =X

n—oo
and we assume that 7 is continuous, so that lim,, o 7(X(n)) = 7(X).

1. Show that *(X)(1 — r*(X)) = n(X)(1 — n(X)).
Solution.



If n(X) < 1/2, then r*(X) = n(X) and r*(X)(1 — r*(X)) = n(X)(1 — n(X)).
If 9(X) > 1/2, then *(X) = 1 — n(X) and r*(X)(1 — r*(X)) = n(X)(1 — n(X)). O

. Show that for any ¢ € [1 : n], we have almost surely,

Solution.
We have
P(Y =0,Y; = 1,¢n(X) = i|X, X1:n) = E (Ly—oly; =114, (x)=4| X, X1:n)
=E(ly=o| X)E(Ly;=1[X:) {4, (x)=i}
=1 = nX))n(Xi) (g, (x)=i}

O
. Noting that almost-surely, n(X,)) = > i 7(Xi)1 {4, (x)=i} deduce that, almost-surely,
P(Y = 0,hn(X) = 11X, X1.) = (1 = (X)X (n)),
Solution.
P(Y =0,hn(X) =1|X, X1:0) = > P(Y =0,Yi = 1,¢n(X) = i X, X1.n)
i=1
=2 (A =n(X)n(Xi)1(s, (x)=i)
i=1
= (1 = n(X)n(X@n))
O
. In the same way, show that
P(Y = 1,h,(X) = 0|X, X1.) = n(X) (1 — n(X(n))),
Solution.
This is a simple adapatation from the two previous questions. O

. Using that if (Z,)nen is a family of bounded random variables, converging almost surely to Z, then
lim,,_, E[Z,,] = E[Z], show that

Tim B(Y # 5y (X)) = 2E[(X)(1 - n(X))]
Solution.
We have
P(Y # hn(X)) = E[P(Y = 0, hn(X) = 1|X, X1.)] + E[P(Y = 1, hn(X) = 0| X, X1.n)]
= E[n(X(n)) (1 = n(X)] + En(X)(1 = n(X(n)))] = 2ER(X)(1 —n(X))]
where we have used that 0 < 7(X(n))(1 — (X)) < 1 and limp— 00 (X () (1 — (X)) = n(X)(1 — n(X)) almost
surely. And the same reasoning holds for the second expectation E[n(X)(1 — n(X(y)))]- O

. Deduce that R
lim B(Y # by (X)) = 2E[r* (X)(1 — (X))
n—oo
Solution.
The results holds immediately from the previous question and the first question. O
. Deduce that .
lim P(Y # h,(X)) < 2R*(1 - R*)

n—oo

Solution.



From the previous question,
Tim B(Y # ha (X)) = 2E[*(X)(1 — (X))
=2 [E[r*(X)] - E[r*(X)?]]
<2 [E[r*(X)] — E*[r*(X)]] =2R*(1 — R*)

8. Conclude.
Solution.

Since iln is a classifier, we also have .
R* <P(Y # hn(X))

Combining with the previous question, we finally get

R* < lim P(Y # hn(X)) < 2R*(1 — R¥)
n—oo



