EXERCISE 1 (A CLASSICAL OPTIMIZATION PROPERTY.) Let $h(\beta) = (\beta - u)^2 + c|\beta|$ where $c \geqslant 0$, $u \in \mathbb{R}^*$ and $\beta \in \mathbb{R}$.

- 1. Show that there exists a unique minimum for h that is attained on some $\beta^* \in \mathbb{R}$.
- 2. Deduce that

$$\beta^* = u \left(1 - \frac{c}{2|u|} \right)^+$$

Solution.

- 1. The function h is strictly convex and $\lim_{\beta \to \pm \infty} |h(x)| = \infty$. This implies that h admits a unique minimizer β^* .
- 2. Case 1 $\beta^{\star} \neq 0$, in which case $h'(\beta^{\star}) = 0$. This implies $2(\beta^{\star} u) + c \operatorname{sgn}(\beta^{\star}) = 0$. Therefore $2u = \operatorname{sgn}(\beta^{\star}) \left(2|\beta^{\star}| + c\right)$, which implies $\operatorname{sgn}(u) = \operatorname{sgn}(\beta^{\star})$. Therefore $2(\beta^{\star} u) + c \operatorname{sgn}(u) = 0$ from which we deduce $\beta^{\star} = u \left(1 \frac{c}{2|u|}\right)$. Using again $\operatorname{sgn}(u) = \operatorname{sgn}(\beta^{\star})$, we deduce $1 \frac{c}{2|u|} \geqslant 0$ and finally,

$$\beta^* = u \left(1 - \frac{c}{2|u|} \right)^+$$

Case 2 $\beta^{\star}=0$. In this case, for all $\beta\neq 0$, $h(\beta)\geqslant h(0)=u^2$, which is equivalent to $\beta^2-2\beta u+c|\beta|\geqslant 0$. Dividing by $|\beta|$ and letting $\beta\to 0$, we get $-2u\mathrm{sgn}(\beta)+c\geqslant 0$ which in turn implies $-2|u|+c\geqslant 0$. This shows $1-\frac{c}{2|u|}\leqslant 0$ and we therefore have again :

$$\beta^{\star} = 0 = u \left(1 - \frac{c}{2|u|} \right)^{+}$$

EXERCISE 2 (**ELASTIC-NET**) Let $Y \in \mathbb{R}^n$ and $\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_p] \in \mathbb{R}^{n \times p}$. The Elastic-Net estimator involves both a ℓ^2 and a ℓ^1 penalty. It is defined for $\lambda \geqslant 0$ and $\mu \geqslant 0$ by

$$\widehat{\beta}_{\lambda,\mu} \in \operatorname*{argmin}_{\beta \in \mathbb{R}^p} \mathcal{L}(\beta) \quad \text{with} \quad \mathcal{L}(\beta) = \|Y - \mathbf{X}\beta\|^2 + \lambda \|\beta\|^2 + \mu |\beta|_{\ell^1}.$$

In the equation above, we have used the notation : $\|\beta\|^2 = \sum_{i=1}^p \beta_i^2$ and $|\beta|_{\ell^1} = \sum_{i=1}^p |\beta_i|$. In the following, we assume that the columns of $\mathbf X$ have norm 1, that is, $\mathbf X_i' \mathbf X_i = 1$ for any $i \in [1:p]$.

1. Let $j \in [1:p]$. Define $R_j = \mathbf{X}_j' \bigg(Y - \sum_{k: k \neq j} \beta_k \mathbf{X}_k \bigg)$. Writing $\mathbf{X}\beta = \sum_{i=1}^p \beta_i \mathbf{X}_i$, show that

$$\mathcal{L}(\beta) = \beta_j^2 (1+\lambda) - 2\beta_j R_j + \mu |\beta_j| + H_j((\beta_k)_{k \in [1:p] \setminus \{j\}})$$

where $H_j((\beta_k)_{k \in [1:p] \setminus \{j\}})$ does not depend on β_j . Solution.

We have

$$\mathcal{L}(\beta) = \left\| Y - \sum_{i=1}^{p} \beta_{i} \mathbf{X}_{i} \right\|^{2} + \lambda \sum_{i=1}^{p} \beta_{i}^{2} + \mu \sum_{i=1}^{n} |\beta_{i}|$$

$$= \beta_{j}^{2} \underbrace{\mathbf{X}_{j}' \mathbf{X}_{j}}_{1} - 2\beta_{j} \underbrace{\mathbf{X}_{j}^{\top} \left(Y - \sum_{k: k \neq j} \beta_{k} \mathbf{X}_{k} \right)}_{R_{j}} + \lambda \beta_{j}^{2} + \mu |\beta_{j}| + H_{j}((\beta_{k})_{k \in [1:p] \setminus \{j\}})$$

which completes the proof.

2. Using Exercise 1, prove that the minimum of $\beta_j \to \mathcal{L}(\beta_1,\dots,\beta_j,\dots,\beta_p)$ is reached at some β_j^* and give the expression of β_j^* with respect to R_j . Solution.

Write

$$\begin{split} \mathcal{L}(\beta) &= \beta_{j}^{2}(1+\lambda) - 2\beta_{j}R_{j} + \mu|\beta_{j}| + H_{j}((\beta_{k})_{k \in [1:p] \setminus \{j\}}) \\ &= (1+\lambda)\left(\beta_{j}^{2} - 2\beta_{j}\frac{R_{j}}{1+\lambda} + \frac{\mu}{1+\lambda}|\beta_{j}|\right) + H_{j}((\beta_{k})_{k \in [1:p] \setminus \{j\}}) \\ &= (1+\lambda)\left(\left(\beta_{j} - \frac{R_{j}}{1+\lambda}\right)^{2} + \frac{\mu}{1+\lambda}|\beta_{j}|\right) + \tilde{H}_{j}((\beta_{k})_{k \in [1:p] \setminus \{j\}}) \end{split}$$

Applying the first exercise with $u=rac{R_j}{1+\lambda}$ and $c=rac{\mu}{1+\lambda}$, we get that $\mathcal{L}(eta)$ is minimized at

$$\beta_j^* = \frac{R_j}{1+\lambda} \left(1 - \frac{\mu}{2|R_j|} \right)_+$$

3. What algorithm seems reasonable to you in order to approximate the Elastic-Net estimator? **Solution.**

You can for example choose an index j uniformly in $\{1,\ldots,p\}$ and then use the update formula at Question 2 to get the new value for β_i .

EXERCISE 3 Let $Y \in \mathbb{R}^n$ and $\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_p] \in \mathbb{R}^{n \times p}$. Define $\mathbf{X}_{(0)} = [\mathbf{X}_1, \dots, \mathbf{X}_{p-1}] \in \mathbb{R}^{n \times (p-1)}$. We assume that $\mathrm{rank}(\mathbf{X}) = p$, and $Y = \mathbf{X}\beta + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma^2 I_n)$. Consider the following Hypothesis :

$$H_0: \beta_p = 0$$
 versus $H_1: \beta_p \neq 0$

The aim to this exercise is to show that the Fisher Test (or F-test) associated with the statistic $F=\frac{\|\hat{Y}-\hat{Y}_{(0)}\|^2}{\|Y-\hat{Y}\|^2/(n-p)}$ where $\hat{Y}_{(0)}=P_{\mathbf{X}_{(0)}}Y$ is the orthogonal projection of Y on $\mathcal{I}(\mathbf{X}_{(0)})$ is equivalent to the Student test associated to the test statistic :

$$T = \frac{\hat{\beta}_p}{\hat{\sigma} \times \sqrt{(\mathbf{X}'\mathbf{X})_{pp}^{-1}}} \quad \text{where} \quad \hat{\sigma}^2 = \|Y - \hat{Y}\|^2/(n-p)$$

Define .

- 1. According to the course, what is the distribution of T under H_0 ? (No proof is needed). **Solution.**
- According to the course, $T \sim t(n-p)$.
 - 2. According to the course, what is the distribution of F under H_0 ? (No proof is needed). **Solution**.
- According to the course, $F \sim \mathcal{F}(1, n-p)$.
 - 3. Show that $P_{\mathbf{X}_{(0)}}(Y \hat{Y}) = 0$. Solution.

 $Y - \hat{Y} \text{ is orthogonal to } \mathcal{I}(\mathbf{X}). \text{ But } \mathcal{I}(\mathbf{X}_{(0)}) \subset \mathcal{I}(\mathbf{X}). \text{ Hence, } Y - \hat{Y} \in \mathcal{I}(\mathbf{X}_{(0)})^{\perp}, \text{ which implies that } P_{\mathbf{X}_{(0)}}(Y - \hat{Y}) = 0.$

4. Deduce that $\hat{Y}_{(0)} = P_{\mathbf{X}_{(0)}}(\mathbf{X}\hat{\beta}).$ Solution.

Hence,

$$\hat{Y}_{(0)} = P_{\mathbf{X}_{(0)}}(Y) = P_{\mathbf{X}_{(0)}}(\hat{Y}) = P_{\mathbf{X}_{(0)}}(\mathbf{X}\hat{\beta})$$

5. Using that $\mathbf{X}\hat{\beta} = \sum_{i=1}^p \hat{\beta}_i \mathbf{X}_i$, deduce that $\hat{Y} - \hat{Y}_{(0)} = \hat{\beta}_p (\mathbf{X}_p - P_{\mathbf{X}_{(0)}}(\mathbf{X}_p))$. Solution.

Hence

$$\hat{Y} - \hat{Y}_{(0)} = \mathbf{X}\hat{\beta} - P_{\mathbf{X}_{(0)}}(\mathbf{X}\hat{\beta}) = \sum_{i=1}^{p} \hat{\beta}_{i}\mathbf{X}_{i} - \sum_{i=1}^{p} \hat{\beta}_{i}P_{\mathbf{X}_{(0)}}(\mathbf{X}_{i}) = \sum_{i=1}^{p} \hat{\beta}_{i} \left[\mathbf{X}_{i} - P_{\mathbf{X}_{(0)}}(\mathbf{X}_{i})\right]$$

but $P_{\mathbf{X}_{(0)}}(\mathbf{X}_i) = \mathbf{X}_i$ for any $i \in [1:p-1]$. After cancelling the terms for $i \in [1:p-1]$, it remains $\hat{Y} - \hat{Y}_{(0)} = \hat{\beta}_p \mathbf{X}_p - \hat{\beta}_p P_{\mathbf{X}_{(0)}}(\mathbf{X}_p)$.

6. Deduce that $F=\frac{\hat{\beta}_p^2}{\hat{\sigma}^2}\alpha$ where α is a real number that you will express. Solution.

Using the previous question,

$$F = \frac{\|\hat{Y} - \hat{Y}_{(0)}\|^2}{\hat{\sigma}^2} = \frac{\hat{\beta}_p^2 \mathbf{X}_p' (Id - P_{\mathbf{X}_{(0)}})^2 (\mathbf{X}_p)}{\hat{\sigma}^2} = \frac{\hat{\beta}_p^2}{\hat{\sigma}^2} \mathbf{X}_p' (Id - P_{\mathbf{X}_{(0)}}) \mathbf{X}_p$$
 since $P_{\mathbf{X}_{(0)}} = P_{\mathbf{X}_{(0)}}' = P_{\mathbf{X}_{(0)}}^2$. Hence, $\alpha = \mathbf{X}_p' (Id - P_{\mathbf{X}_{(0)}}) \mathbf{X}_p$.

7. Writing $\mathbf{X}'\mathbf{X} = \begin{pmatrix} \mathbf{X}'_{(0)}\mathbf{X}_{(0)} & \mathbf{X}'_{(0)}\mathbf{X}_p \\ \mathbf{X}'_p\mathbf{X}_{(0)} & \mathbf{X}'_p\mathbf{X}_p \end{pmatrix}$, we admit (without proof) that

$$(\mathbf{X}'\mathbf{X})_{nn}^{-1} = (\mathbf{X}_n'\mathbf{X}_p - \mathbf{X}_n'\mathbf{X}_{(0)}(\mathbf{X}_{(0)}'\mathbf{X}_{(0)})^{-1}\mathbf{X}_{(0)}'\mathbf{X}_p)^{-1}$$

Deduce that F = h(T) where $h : \mathbb{R} \to \mathbb{R}$ is a function that you will express explicitely. **Solution.**

Note that

$$(\mathbf{X}'\mathbf{X})_{pp}^{-1} = (\mathbf{X}_p'\mathbf{X}_p - \mathbf{X}_p'\mathbf{X}_{(0)}(\mathbf{X}_{(0)}'\mathbf{X}_{(0)})^{-1}\mathbf{X}_{(0)}'\mathbf{X}_p)^{-1} = (\mathbf{X}_p'(Id - P_{\mathbf{X}_{(0)}})\mathbf{X}_p)^{-1} = \alpha^{-1}$$

Combining with the previous question, $F=T^2=h(T)$

8. Prove the following assertion : if T follows a Student distribution with n-p degrees of freedom, show that T^2 follows a Fisher distribution $\mathcal{F}_{i,j}$ and express i and j in terms of n-p. Solution.

If $U \sim N(0,1)$ and $V \sim \chi_2(n-p)$ such that U and V are independent then, T has the same law as

$$S = U/\sqrt{V/(n-p)} \sim t(n-p)$$

Then, $S^2=\frac{U^2}{V/(n-p)}$ has the same law as T^2 and $U^2\sim \chi_2(1)$, $V\sim \chi_2(n-p)$ and U^2 and V are independent. Hence, S^2 and hence T^2 follows the distribution $\mathcal{F}_{1,n-p}$.

EXERCISE 4 In this exercise, we consider iid observations $(X_i, Y_i)_{1 \le i \le n}$ where Y_i takes values in $\{0, 1\}$ and X_i takes values in \mathbb{R}^d . For a given $x \in \mathbb{R}^d$, we will consider the following classifier : $\hat{h}_n(x) = Y_{\phi_n(x)}$ where

$$\phi_n(x) = \operatorname{argmin}_{i \in [1:n]} ||x - X_i||$$

In words, $\phi_n(x)$ is the index of the nearest neighbor of x among the data set $\{X_i;\ i\in[1:n]\}$. In all the exercise, we consider a couple of random variable (X,Y) with the same law as (X_i,Y_i) for any $i\geqslant 1$. And to avoid any ambiguity in the definition of the index $\phi_n(X)$ we assume that with probability 1, all the $\|X-X_i\|$ for any $i\in\mathbb{N}$ are strictly different.

Recall that the Bayes optimal classifier is defined by

$$h^{\star}(X) = \begin{cases} 1 & \text{if } \mathbb{P}(Y=1|X) > \mathbb{P}(Y=0|X) \\ 0 & \text{otherwise} \end{cases}$$

and recall that defining $\eta(X) = \mathbb{P}(Y=1|X)$ and $r^{\star}(X) = \min(\eta(X), 1 - \eta(X))$, we have

$$R^* = \mathbb{P}(Y \neq h^*(X)) = \mathbb{E}[r^*(X)] \leqslant \mathbb{P}(Y \neq h(X))$$

for any other classifier $h: \mathbb{R}^d \to \{0,1\}$. The aim of this exercise is to show the bound

$$R^* \leqslant \lim_{n \to \infty} \mathbb{P}(Y \neq \hat{h}_n(X)) \leqslant 2R^*(1 - R^*)$$

Define $X_{(n)} = X_{\phi_n(X)}$ the nearest neighbor of X among the set $\{(X_i); i \in [1:n]\}$. We admit that, almost-surely,

$$\lim_{n \to \infty} X_{(n)} = X$$

and we assume that η is continuous, so that $\lim_{n\to\infty}\eta(X_{(n)})=\eta(X)$.

1. Show that $r^{\star}(X)(1-r^{\star}(X))=\eta(X)(1-\eta(X)).$ Solution.

$$\begin{array}{l} \text{If } \eta(X) \leqslant 1/2, \text{ then } r^{\star}(X) = \eta(X) \text{ and } r^{\star}(X)(1-r^{\star}(X)) = \eta(X)(1-\eta(X)). \\ \text{If } \eta(X) > 1/2, \text{ then } r^{\star}(X) = 1 - \eta(X) \text{ and } r^{\star}(X)(1-r^{\star}(X)) = \eta(X)(1-\eta(X)). \end{array} \qquad \Box$$

2. Show that for any $i \in [1:n]$, we have almost surely,

$$\mathbb{P}(Y = 0, Y_i = 1, \phi_n(X) = i | X, X_{1:n}) = (1 - \eta(X)) \eta(X_i) \mathbb{1}_{\{\phi_n(X) = i\}}$$

Solution.

We have

$$\begin{split} \mathbb{P}(Y = 0, Y_i = 1, \phi_n(X) = i | X, X_{1:n}) &= \mathbb{E} \left(\mathbb{1}_{Y = 0} \mathbb{1}_{Y_i = 1} \mathbb{1}_{\phi_n(X) = i} | X, X_{1:n} \right) \\ &= \mathbb{E} (\mathbb{1}_{Y = 0} | X) \mathbb{E} (\mathbb{1}_{Y_i = 1} | X_i) \mathbb{1}_{\{\phi_n(X) = i\}} \\ &= (1 - \eta(X)) \eta(X_i) \mathbb{1}_{\{\phi_n(X) = i\}} \end{split}$$

3. Noting that almost-surely, $\eta(X_{(n)}) = \sum_{i=1}^n \eta(X_i) \mathbb{1}_{\{\phi_n(X)=i\}}$, deduce that, almost-surely,

$$\mathbb{P}(Y = 0, \hat{h}_n(X) = 1 | X, X_{1:n}) = (1 - \eta(X)) \eta(X_{(n)}),$$

Solution.

$$\mathbb{P}(Y = 0, \hat{h}_n(X) = 1 | X, X_{1:n}) = \sum_{i=1}^n \mathbb{P}(Y = 0, Y_i = 1, \phi_n(X) = i | X, X_{1:n})$$
$$= \sum_{i=1}^n (1 - \eta(X)) \eta(X_i) \mathbb{1}_{\{\phi_n(X) = i\}}$$
$$= (1 - \eta(X)) \eta(X_{(n)})$$

4. In the same way, show that

$$\mathbb{P}(Y = 1, \hat{h}_n(X) = 0 | X, X_{1:n}) = \eta(X)(1 - \eta(X_{(n)})),$$

Solution.

- This is a simple adapatation from the two previous questions.
 - 5. Using that if $(Z_n)_{n\in\mathbb{N}}$ is a family of bounded random variables, converging almost surely to Z, then $\lim_{n\to\infty}\mathbb{E}[Z_n]=\mathbb{E}[Z]$, show that

$$\lim_{n \to \infty} \mathbb{P}(Y \neq \hat{h}_n(X)) = 2\mathbb{E}[\eta(X)(1 - \eta(X))]$$

Solution.

We have

$$\begin{split} \mathbb{P}(Y \neq \hat{h}_n(X)) &= \mathbb{E}[\mathbb{P}(Y = 0, \hat{h}_n(X) = 1 | X, X_{1:n})] + \mathbb{E}[\mathbb{P}(Y = 1, \hat{h}_n(X) = 0 | X, X_{1:n})] \\ &= \mathbb{E}[\eta(X_{(n)})(1 - \eta(X))] + \mathbb{E}[\eta(X)(1 - \eta(X_{(n)}))] \to 2\mathbb{E}[\eta(X)(1 - \eta(X))] \end{split}$$

where we have used that $0 \leqslant \eta(X_{(n)})(1-\eta(X)) \leqslant 1$ and $\lim_{n\to\infty} \eta(X_{(n)})(1-\eta(X)) = \eta(X)(1-\eta(X))$ almost surely. And the same reasoning holds for the second expectation $\mathbb{E}[\eta(X)(1-\eta(X_{(n)}))]$.

6. Deduce that

$$\lim_{n \to \infty} \mathbb{P}(Y \neq \hat{h}_n(X)) = 2\mathbb{E}[r^{\star}(X)(1 - r^{\star}(X))]$$

Solution.

- The results holds immediately from the previous question and the first question.
 - 7. Deduce that

$$\lim_{n \to \infty} \mathbb{P}(Y \neq \hat{h}_n(X)) \leqslant 2R^*(1 - R^*)$$

Solution.

From the previous question,

$$\begin{split} \lim_{n \to \infty} \mathbb{P}(Y \neq \hat{h}_n(X)) &= 2\mathbb{E}[r^{\star}(X)(1 - r^{\star}(X))] \\ &= 2\left[\mathbb{E}[r^{\star}(X)] - \mathbb{E}[r^{\star}(X)^2]\right] \\ &\leqslant 2\left[\mathbb{E}[r^{\star}(X)] - \mathbb{E}^2[r^{\star}(X)]\right] = 2R^{\star}(1 - R^{\star}) \end{split}$$

8. Conclude.

Solution.

Since \hat{h}_n is a classifier, we also have

$$R^{\star} \leqslant \mathbb{P}(Y \neq \hat{h}_n(X))$$

Combining with the previous question, we finally get

$$R^{\star} \leqslant \lim_{n \to \infty} \mathbb{P}(Y \neq \hat{h}_n(X)) \leqslant 2R^{\star}(1 - R^{\star})$$

5