EXERCISE 1 (SUPPORT VECTOR MACHINE (SVM)) Minimization of convex functions : Karush-Kuhn-Tucker sufficient conditions

Let $f, -g_1, \ldots, -g_n$ be \mathcal{C}^1 convex functions and define the Lagrangian

$$\mathcal{L}: (x,\lambda) \mapsto f(x) - \sum_{i=1}^{n} \lambda_i g_i(x).$$

For any (x, λ) , the Karush-Kuhn-Tucker conditions read :

- 1. $\forall i \in [1, n] : g_i(x) \ge 0$;
- 2. $\forall i \in [1, n] : \lambda_i \geqslant 0$;
- 3. $\nabla_x L(x,\lambda) = 0$;
- 4. $\min(\lambda_i, g_i(x)) = 0$ for i = 1, ..., n.

We know that, under the previous assumptions, KKT conditions are sufficient : if a couple $(\hat{x}, \hat{\lambda})$ fulfills the KKT conditions, then

$$\hat{x} \in \operatorname*{argmin}_{\forall i \in [\![1,n]\!]: g_i(x) \geqslant 0} f(x) \quad \text{and} \quad \hat{\lambda} \in \operatorname*{argmax}_{\lambda \geqslant 0} \inf_{x} \mathcal{L}(x,\lambda) \;.$$

Also, still under the previous assumptions, weak duality holds

$$\sup_{\lambda\geqslant 0}\inf_{x}\mathcal{L}(x,\lambda)\leqslant \inf_{x}\sup_{\lambda\geqslant 0}\mathcal{L}(x,\lambda)=\inf_{\forall i\in [\![1,n]\!]:g_{i}(x)\geqslant 0}f(x).$$

Strong duality (i.e. equality holds) under additional assumptions.

Strong duality: If there exists a x such that $g_i(x) > 0$ for all $i \in \{1, ..., n\}$, then the KKT conditions are also necessary (i.e. $\hat{\lambda}$ exists and KKT conditions are satisfied by $(\hat{x}, \hat{\lambda})$) and

$$\sup_{\lambda \geqslant 0} \inf_{x} \mathcal{L}(x,\lambda) = \inf_{x} \sup_{\lambda \geqslant 0} \mathcal{L}(x,\lambda) .$$

Application to SVM

For any $w \in \mathbb{R}^p$, define the linear function $f_w(x) = \langle w, x \rangle$ from \mathbb{R}^p to \mathbb{R} . For a given R > 0, we consider the set of linear functions $\mathcal{F} = \{f_w : \|w\| \leqslant R\}$. The aim of this exercise is to investigate the classifier $\widehat{h}_{\varphi,\mathcal{F}}(x) = \operatorname{sign}(\widehat{f}_{\varphi,\mathcal{F}}(x))$ where $\widehat{f}_{\varphi,\mathcal{F}}$ is solution to the convex optimisation problem

$$\widehat{f}_{\varphi,\mathcal{F}} \in \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varphi(-y_i f(x_i))$$
,

with $\varphi(x) = (1+x)_+$ the *hinge* loss.

1. From the strong duality, prove that there exists $\lambda \geq 0$ such that

$$\widehat{f}_{\varphi,\mathcal{F}} \in \operatorname{argmin}_{f_w} \left\{ \frac{1}{n} \sum_{i=1}^n (1 - y_i f_w(x_i))_+ + \lambda ||w||^2 \right\}.$$

- 2. Prove that $\widehat{f}_{\varphi,\mathcal{F}}=f_{\widehat{w}}$ where \widehat{w} belongs to $V=\operatorname{Span}\{x_i:i=1,\ldots,n\}.$
- 3. Prove that $\widehat{w} = \sum_{j=1}^n \widehat{\beta}_j x_j$ where $\widehat{\beta} = [\widehat{\beta}_1, \dots, \widehat{\beta}_n]^{\top}$ is solution to

$$\widehat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^n} \left\{ \frac{1}{n} \sum_{i=1}^n (1 - y_i(K\beta)_i)_+ + \lambda \beta^\top K \beta \right\} ,$$

1

with K the Gram matrix $K = [\langle x_i, x_j \rangle]_{1 \leq i,j \leq n}$.

4. Check that this minimization problem is equivalent to

$$\widehat{\beta} = \underset{\substack{y_i(K\beta)_i \geqslant 1 - \xi_i \\ \xi_i \geqslant 0}}{\operatorname{argmin}} \; \underset{\substack{\beta, \, \xi \in \mathbb{R}^n \text{ such that} \\ \xi_i \geqslant 0}}{\beta_i = \operatorname{argmin}} \; \left\{ \frac{1}{n} \sum_{i=1}^n \xi_i + \lambda \beta^\top K \beta \right\}.$$

- 5. Let us assume that K is not singular. From the KKT conditions, check that $\widehat{\beta}_i = y_i \widehat{\alpha}_i/(2\lambda)$, for $i=1,\dots,n$ with $\widehat{\alpha}_i$ fulfilling $\min(\widehat{\alpha}_i,y_i(K\widehat{\beta})_i-(1-\widehat{\xi}_i))=0$ et $\min(1/n-\widehat{\alpha}_i,\widehat{\xi}_i)=0$.
- 6. Prove the following properties

— if
$$y_i \widehat{f}_{\varphi,\mathcal{F}}(x_i) > 1$$
 then $\widehat{\beta}_i = 0$;

— if
$$y_i\widehat{f}_{arphi,\mathcal{F}}(x_i) < 1$$
 then $\widehat{\beta}_i = y_i/(2\lambda n)$;

- in any case (in particular if $y_i \widehat{f}_{\varphi,\mathcal{F}}(x_i) = 1$), $0 \leqslant \widehat{\beta}_i y_i \leqslant 1/(2\lambda n)$.
- 7. From the strong duality, prove that $\widehat{\alpha}_i$ is solution to the dual problem

$$\widehat{\alpha} = \operatorname*{argmax}_{0 \leqslant \alpha_i \leqslant 1/n} \bigg\{ \sum_{i=1}^n \alpha_i - \frac{1}{4\lambda} \sum_{i,j=1}^n K_{i,j} y_i y_j \alpha_i \alpha_j \bigg\}.$$