EXERCISE 1 (LOGISTIC REGRESSION) Let (X, Y) be a couple of random variables with values in $\mathbb{R}^p \times \{0, 1\}$ and $(X_i, Y_i)_{i=1,...,n}$ an i.i.d. sample with same distribution as (X, Y).

A classical approach is to assume a parametric model for the conditional probability $\mathbb{P}[Y=1|X=x]$. The most popular model in \mathbb{R}^d is probably the *logistic model*, where

$$\mathbb{P}[Y=1|X=x] = \frac{\exp\left(\langle \beta^*, x \rangle\right)}{1 + \exp\left(\langle \beta^*, x \rangle\right)} \quad \text{for all } x \in \mathbb{R}^p, \tag{1}$$

with $\beta^* \in \mathbb{R}^p$. In this case, we have $\mathbb{P}[Y=1|X=x] > 1/2$ if and only if $\langle \beta^*, x \rangle > 0$, so the frontier between $\{h_*=1\}$ and $\{h_*=0\}$ is again an hyperplane, with orthogonal direction β^* .

We can estimate the parameter β^* by maximizing the conditional likelihood of (Y_1, \ldots, Y_n) given that $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$:

$$\widehat{\beta} \in \operatorname*{argmax}_{\beta \in \mathbb{R}^d} \prod_{i=1}^n \left[\left(\frac{\exp\left(\left\langle \beta, x_i \right\rangle \right)}{1 + \exp\left(\left\langle \beta, x_i \right\rangle \right)} \right)^{Y_i} \left(\frac{1}{1 + \exp\left(\left\langle \beta, x_i \right\rangle \right)} \right)^{1 - Y_i} \right],$$

and compute the classifier $\widehat{h}_{\text{logistic}}(x) = \mathbf{1}_{\langle \widehat{\beta}, x \rangle > 0}$ for all $x \in \mathbb{R}^p$.

1. Check that the gradient and the Hessian $H_n(\beta)$ of

$$\ell_n(\beta) = -\sum_{i=1}^n \left[Y_i \langle x_i, \beta \rangle - \log(1 + \exp(\langle x_i, \beta \rangle)) \right]$$

are given by

$$\nabla \ell_n(\beta) = -\sum_{i=1}^n \left(Y_i - \frac{e^{\langle x_i, \beta \rangle}}{1 + e^{\langle x_i, \beta \rangle}} \right) x_i \quad \text{and} \quad H_n(\beta) = \sum_{i=1}^n \frac{e^{\langle x_i, \beta \rangle}}{\left(1 + e^{\langle x_i, \beta \rangle} \right)^2} \, x_i x_i^\top.$$

2. We assume $H_n(\beta)$ to be non-singular. What can we say about the function ℓ_n ?

In order to select useful features, we estimate β with the penalized criterion

$$\widehat{\beta}_{\lambda} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \{ \ell_n(\beta) + \lambda |\beta|_1 \},$$

where $\lambda > 0$ is a regularization parameter.

Building on the Taylor expansion $\ell_n(\beta') = \ell_n(\beta) + \langle \nabla \ell_n(\beta), \beta' - \beta \rangle + O(\|\beta' - \beta\|^2)$, we compute $\widehat{\beta}_{\lambda}$ with the following iterations (for a given $\phi > 0$).

INIT: $\beta^0 = 0$, t = 0

ITERATE (until convergence)

$$\beta^{t+1} \in \operatorname*{argmin}_{\beta \in \mathbb{R}^p} \{ \ell_n(\beta^t) + \langle \nabla \ell_n(\beta^t), \beta - \beta^t \rangle + \frac{\phi}{2} \|\beta - \beta^t\|^2 + \lambda |\beta|_1 \}$$

$$t \leftarrow t + 1$$
OUTPUT: β^t

- 3. Check that $\beta^{t+1} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \{ \|\beta \beta^t + \phi^{-1} \nabla \ell_n(\beta^t)\|^2 + \frac{2\lambda}{\phi} |\beta|_1 \}.$
- 4. Conclude that $\beta^{t+1} = S_{\lambda/\phi}(\beta^t \phi^{-1}\nabla \ell_n(\beta^t))$, where $S_\mu(x) = [x_j(1-\mu/|x_j|)_+]_{j=1,\dots,p}$.

EXERCISE 2 Let $h(\beta) = (\beta - u)^2 + c|\beta|$ where u > 0. Show that the argmin of h can be written as

$$\beta^* = u \left(1 - \frac{c}{2|u|} \right)^+$$

1