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Exercise 1 (Excess of risk for a finite class of classifiers) Let (Ω,F ,P) be a probability
space. Assume that (X,Y ) is a couple of random variables defined on (Ω,F ,P) and taking values in X ×
{−1, 1} where X is a given state space. One aim of supervised classification is to define a function h : X →
{−1, 1}, called classifier, such that h(X) is the best prediction of Y in a given context. For instance, the
probability of misclassification of h is

Lmiss(h) = P (Y ̸= h(X)) .

Note that E[Y |X] is a random variable measurable with respect to the σ-algebra σ(X). Therefore, there
exists a function η : X → [−1, 1] so that E[Y |X] = η(X) almost surely.

1. Prove that the classifier h⋆, defined for all x ∈ X , by

h⋆(x) =

{
1 if η(x) > 0 ,
−1 otherwise ,

is such that
h⋆ ∈ argmin

h:X→{−1,1}
Lmiss(h) .

Note that this optimal classifier corresponds to h⋆ = 1 if P(Y = 1|X) ≥ P(Y = −1|X) and h⋆ = −1 if
P(Y = −1|X) > P(Y = 1|X), which is sometimes more intuitive...

2. Recall the mixture of Gaussians example (in Day 1 exercise on Classification). Consider a random
variable Y which takes the value 1 with probability π1 and −1 with probability π−1. If Y = 1, we have
X|Y=1 ∼ N(µ1,Σ) and if Y = −1, X|Y=−1 ∼ N(µ−1,Σ). Assume we observe (X1, . . . , Xn). Use the
previous question and the EM algorithm to classify which of these Xi have been obtained from Yi = 1
and which have been obtained by Yi = −1.

3. In practice, the minimization of Lmiss holds on a specific set H of classifiers (often called the dictionary),
which may possibly not contain the Bayes classifier. Moreover, since in most cases, the classification
risk Lmiss cannot be computed nor minimized, it is instead estimated by the empirical classification risk
defined as

L̂n
miss(h) =

1

n

n∑
i=1

1Yi ̸=h(Xi) ,

where (Xi, Yi)1⩽i⩽n are independent observations with the same distribution as (X,Y ). The classifica-
tion problem then boils down to solving

ĥn
H ∈ argmin

h∈H
L̂n
miss(h) .

Prove that for all set H of classifiers and all n ⩾ 1,

Lmiss(ĥ
n
H)− inf

h∈H
Lmiss (h) ⩽ 2sup

h∈H

∣∣∣L̂n
miss(h)− Lmiss (h)

∣∣∣ .
4. Using Hoeffding’s inequality, prove that when H = {h1, . . . , hM} for a given M ⩾ 1, then, for all δ > 0,

P

(
Lmiss(ĥ

n
H) ⩽ min

1⩽j⩽M
Lmiss(hj) +

√
2

n
log

(
2M

δ

))
⩾ 1− δ .

Recall that the Hoeffing’s inequality yields: Let (Xi)1⩽i⩽n be n independent random variables such
that for all 1 ⩽ i ⩽ n, P(ai ⩽ Xi ⩽ bi) = 1 where ai, bi are real numbers such that ai < bi. The aim of
this exercise is to prove the following inequality. For all t > 0,

P

(∣∣∣∣∣
n∑

i=1

Xi −
n∑

i=1

E [Xi]

∣∣∣∣∣ > t

)
⩽ 2exp

(
−2t2∑n

i=1(bi − ai)2

)
.
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