EXERCISE 1 (EXCESS OF RISK FOR A FINITE CLASS OF CLASSIFIERS) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Assume that (X, Y) is a couple of random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in $\mathcal{X} \times$ ${-1, 1}$ where X is a given state space. One aim of supervised classification is to define a function $h : X \rightarrow$ ${-1, 1}$, called *classifier*, such that $h(X)$ is the best prediction of Y in a given context. For instance, the probability of misclassification of h is

$$
L_{\text{miss}}(h) = \mathbb{P}\left(Y \neq h(X)\right).
$$

Note that $\mathbb{E}[Y|X]$ is a random variable measurable with respect to the σ -algebra $\sigma(X)$. Therefore, there exists a function $\eta : \mathcal{X} \to [-1,1]$ so that $\mathbb{E}[Y|X] = \eta(X)$ almost surely.

1. Prove that the classifier h_* , defined for all $x \in \mathcal{X}$, by

$$
h_{\star}(x) = \begin{cases} 1 & \text{if } \eta(x) > 0 \\ -1 & \text{otherwise} \end{cases}
$$

is such that

$$
h_\star \in \operatorname*{argmin}_{h:\mathcal{X}\to\{-1,1\}} L_{\text{miss}}(h) .
$$

Note that this optimal classifier corresponds to $h_{\star} = 1$ if $\mathbb{P}(Y = 1|X) \geq \mathbb{P}(Y = -1|X)$ and $h_{\star} = -1$ if $\mathbb{P}(Y = -1|X) > \mathbb{P}(Y = 1|X)$, which is sometimes more intuitive...

- 2. Recall the mixture of Gaussians example (in Day 1 exercise on Classification). Consider a random variable Y which takes the value 1 with probability π_1 and -1 with probability π_{-1} . If $Y = 1$, we have $X|_{Y=1} \sim N(\mu_1, \Sigma)$ and if $Y = -1$, $X|_{Y=-1} \sim N(\mu_{-1}, \Sigma)$. Assume we observe (X_1, \ldots, X_n) . Use the previous question and the EM algorithm to classify which of these X_i have been obtained from $Y_i = 1$ and which have been obtained by $Y_i = -1$.
- 3. In practice, the minimization of $L_{\rm miss}$ holds on a specific set H of classifiers (often called the *dictionary*), which may possibly not contain the Bayes classifier. Moreover, since in most cases, the classification risk L_{miss} cannot be computed nor minimized, it is instead estimated by the empirical classification risk defined as

$$
\widehat{L}_{\text{miss}}^n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Y_i \neq h(X_i)},
$$

where $(X_i,Y_i)_{1\leqslant i\leqslant n}$ are independent observations with the same distribution as $(X,Y).$ The classification problem then boils down to solving

$$
\widehat{h}_{\mathcal{H}}^n \in \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{L}_{\text{miss}}^n(h).
$$

Prove that for all set H of classifiers and all $n \geq 1$,

$$
L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^n) - \inf_{h \in \mathcal{H}} L_{\text{miss}}(h) \leq 2 \sup_{h \in \mathcal{H}} \left| \widehat{L}_{\text{miss}}^n(h) - L_{\text{miss}}(h) \right|.
$$

4. Using Hoeffding's inequality, prove that when $\mathcal{H} = \{h_1, \ldots, h_M\}$ for a given $M \geq 1$, then, for all $\delta > 0$,

$$
\mathbb{P}\left(L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^n) \leq \min_{1 \leq j \leq M} L_{\text{miss}}(h_j) + \sqrt{\frac{2}{n} \log\left(\frac{2M}{\delta}\right)}\right) \geq 1 - \delta.
$$

Recall that the Hoeffing's inequality yields: Let $(X_i)_{1\leq i\leq n}$ be n independent random variables such that for all $1 \leq i \leq n$, $\mathbb{P}(a_i \leq X_i \leq b_i) = 1$ where a_i, b_i are real numbers such that $a_i < b_i$. The aim of this exercise is to prove the following inequality. For all $t > 0$,

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mathbb{E}\left[X_i\right]\right| > t\right) \leqslant 2 \exp\left(\frac{-2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)
$$

.