EXERCISE 1 (EXCESS OF RISK FOR A FINITE CLASS OF CLASSIFIERS) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Assume that (X, Y) is a couple of random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in $\mathcal{X} \times \{-1, 1\}$ where \mathcal{X} is a given state space. One aim of supervised classification is to define a function $h : \mathcal{X} \to \{-1, 1\}$, called *classifier*, such that h(X) is the best prediction of Y in a given context. For instance, the probability of misclassification of h is

$$L_{\text{miss}}(h) = \mathbb{P}\left(Y \neq h(X)\right)$$
.

Note that $\mathbb{E}[Y|X]$ is a random variable measurable with respect to the σ -algebra $\sigma(X)$. Therefore, there exists a function $\eta : \mathcal{X} \to [-1, 1]$ so that $\mathbb{E}[Y|X] = \eta(X)$ almost surely.

1. Prove that the classifier h_{\star} , defined for all $x \in \mathcal{X}$, by

$$h_{\star}(x) = \begin{cases} 1 & \text{if } \eta(x) > 0, \\ -1 & \text{otherwise}, \end{cases}$$

is such that

$$h_{\star} \in \underset{h:\mathcal{X} \to \{-1,1\}}{\operatorname{argmin}} L_{\operatorname{miss}}(h).$$

Note that this optimal classifier corresponds to $h_{\star} = 1$ if $\mathbb{P}(Y = 1|X) \ge \mathbb{P}(Y = -1|X)$ and $h_{\star} = -1$ if $\mathbb{P}(Y = -1|X) > \mathbb{P}(Y = 1|X)$, which is sometimes more intuitive...

- 2. Recall the mixture of Gaussians example (in Day 1 exercise on Classification). Consider a random variable Y which takes the value 1 with probability π_1 and -1 with probability π_{-1} . If Y = 1, we have $X|_{Y=1} \sim N(\mu_1, \Sigma)$ and if Y = -1, $X|_{Y=-1} \sim N(\mu_{-1}, \Sigma)$. Assume we observe (X_1, \ldots, X_n) . Use the previous question and the EM algorithm to classify which of these X_i have been obtained from $Y_i = 1$ and which have been obtained by $Y_i = -1$.
- 3. In practice, the minimization of L_{miss} holds on a specific set \mathcal{H} of classifiers (often called the *dictionary*), which may possibly not contain the Bayes classifier. Moreover, since in most cases, the classification risk L_{miss} cannot be computed nor minimized, it is instead estimated by the empirical classification risk defined as

$$\widehat{L}_{\mathrm{miss}}^n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Y_i \neq h(X_i)}$$

where $(X_i, Y_i)_{1 \le i \le n}$ are independent observations with the same distribution as (X, Y). The classification problem then boils down to solving

$$\widehat{h}_{\mathcal{H}}^n \in \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{L}_{\mathrm{miss}}^n(h)$$

Prove that for all set \mathcal{H} of classifiers and all $n \ge 1$,

$$L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^{n}) - \inf_{h \in \mathcal{H}} L_{\text{miss}}(h) \leq 2\sup_{h \in \mathcal{H}} \left| \widehat{L}_{\text{miss}}^{n}(h) - L_{\text{miss}}(h) \right| \,.$$

4. Using Hoeffding's inequality, prove that when $\mathcal{H} = \{h_1, \dots, h_M\}$ for a given $M \ge 1$, then, for all $\delta > 0$,

$$\mathbb{P}\left(L_{\mathrm{miss}}(\widehat{h}_{\mathcal{H}}^{n}) \leqslant \min_{1 \leqslant j \leqslant M} L_{\mathrm{miss}}(h_{j}) + \sqrt{\frac{2}{n} \log\left(\frac{2M}{\delta}\right)}\right) \ge 1 - \delta.$$

Recall that the Hoeffing's inequality yields: Let $(X_i)_{1 \leq i \leq n}$ be *n* independent random variables such that for all $1 \leq i \leq n$, $\mathbb{P}(a_i \leq X_i \leq b_i) = 1$ where a_i, b_i are real numbers such that $a_i < b_i$. The aim of this exercise is to prove the following inequality. For all t > 0,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]\right| > t\right) \leq 2\exp\left(\frac{-2t^{2}}{\sum_{i=1}^{n} (b_{i} - a_{i})^{2}}\right)$$