EXERCISE 1 (EXPECTATION MAXIMIZATION ALGORITHM) In the case where we are interested in estimating unknown parameters $\theta \in \mathbb{R}^m$ characterizing a model with missing data, the Expectation Maximization (EM) algorithm (Dempster et al. 1977) can be used when the joint distribution of the missing data Y and the observed data X is explicit. For all $\theta\in\R^m$, let p_θ be the probability density function of (X,Y) when the model is parameterized by θ with respect to a given reference measure μ . The EM algorithm aims at computing iteratively an approximation of the maximum likelihood estimator which maximizes the observed data loglikelihood:

$$
\ell(\theta; X) = \log f_{\theta}(X) = \log \int p_{\theta}(X, y) \mu(\mathrm{d}y).
$$

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the maximum likelihood estimator by iteratively maximizing the expected complete data loglikelihood. Start with an inital value $\theta^{(0)}$ and let $\theta^{(t)}$ be the estimate at the t-th iteration for $t\geqslant 0$, then the next iteration of EM is decomposed into two steps.

E step. Compute the expectation of the complete data loglikelihood, with respect to the conditional distribution of the missing data given the observed data parameterized by $\theta^{(t)}$:

$$
Q(\theta, \theta^{(t)}) = \mathbb{E}_{\theta^{(t)}} [\log p_{\theta}(X, Y)|X].
$$

 $\mathbf M$ step Determine $\theta^{(t+1)}$ by maximizing the function Q:

$$
\theta^{(t+1)} \in \text{argmax}_{\theta} Q(\theta, \theta^{(t)})\,.
$$

1. Prove the following crucial property, that motivates the EM algorithm. For all $\theta, \theta^{(t)},$

$$
\ell(\theta, X) - \ell(\theta^{(t)}, X) \ge Q(\theta, \theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)}).
$$

Therefore, we straightforwardly have that the EM algorithm produces a non decreasing sequence of loglikelihoods $(\ell(X; \theta^{(t)}))_t$.

 ${\rm \bf Mixture\ of\ Gaussians.}$ In the following, $X=(X_1,\ldots,X_n)$ and $Y=(Y_1,\ldots,Y_n)$ where $\{(X_i,Y_i)\}_{1\leqslant i\leqslant n}$ are i.i.d. in $\mathbb{R}^d\times\{-1,1\}$. For $k\in\{-1,1\}$, write $\pi_k=\mathbb{P}(Y_1=k)$. Assume that, conditionally on the event $\{Y_1=k\}$, X_1 has a Gaussian distribution with mean $\mu_k\in\mathbb{R}^d$ and covariance matrix $\Sigma\in\mathbb{R}^{d\times d}$. In this case, the parameter $\theta=(\pi_1,\mu_1,\mu_{-1},\Sigma)$ belongs to the set $\Theta=[0,1]\times\mathbb{R}^d\times\mathbb{R}^d\times\mathbb{R}^{d\times d}.$

- 2. Write the complete data loglikelihood.
- 3. Let $\theta^{(t)}$ be the current parameter estimate. Compute $\theta\mapsto Q(\theta,\theta^{(t)})$ (tips: use $\omega^i_t=\mathbb{P}_{\theta^{(t)}}(Y_i=1|X_i))$
- 4. Compute $\theta^{(t+1)}$.

EXERCISE 2 $_{n}^{+}$ the space of real-valued $n\times n$ symmetric positive matrices. We show

- 1. Show that the function $X \mapsto \log \det X$ is concave on M_n^+ .
- 2. The derivative of the real valued function $\Sigma\mapsto \log\det(\Sigma)$ defined on $\R^{d\times d}$ is given at a Σ which is symmetric positive by:

$$
\partial_{\Sigma}\{\log\det(\Sigma)\} = \Sigma^{-1}
$$

,

where, for all real valued function f defined on $\R^{d\times d}$, $\partial_\Sigma f(\Sigma)$ denotes the $\R^{d\times d}$ matrix such that for all $1 \leq i, j \leq d$, $\{\partial_{\Sigma} f(\Sigma)\}_{i,j}$ is the partial derivative of f with respect to $\Sigma_{i,j}$.