
Day 1. Classification. EMINES 2023.

Exercise 1 (Expectation Maximization algorithm) In the case where we are interested in
estimating unknown parameters θ ∈ Rm characterizing a model with missing data, the Expectation Maximiza-
tion (EM) algorithm (Dempster et al. 1977) can be used when the joint distribution of the missing data Y
and the observed data X is explicit. For all θ ∈ Rm, let pθ be the probability density function of (X,Y ) when
the model is parameterized by θ with respect to a given reference measure µ. The EM algorithm aims at
computing iteratively an approximation of the maximum likelihood estimator which maximizes the observed
data loglikelihood:

ℓ(θ;X) = log fθ(X) = log

∫
pθ(X, y)µ(dy).

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the maximum likelihood
estimator by iteratively maximizing the expected complete data loglikelihood. Start with an inital value θ(0)

and let θ(t) be the estimate at the t-th iteration for t ⩾ 0, then the next iteration of EM is decomposed into
two steps.

E step. Compute the expectation of the complete data loglikelihood, with respect to the conditional distri-
bution of the missing data given the observed data parameterized by θ(t):

Q(θ, θ(t)) = Eθ(t) [log pθ(X,Y )|X] .

M step Determine θ(t+1) by maximizing the function Q:

θ(t+1) ∈ argmaxθQ(θ, θ(t)) .

1. Prove the following crucial property, that motivates the EM algorithm. For all θ, θ(t),

ℓ(θ,X)− ℓ(θ(t), X) ⩾ Q(θ, θ(t))−Q(θ(t), θ(t)) .

Solution.

This may be proved by noting that

ℓ(θ,X) = log

(
pθ(X,Y )

pθ(Y |X)

)
.

Considering the conditional expectation of both terms given X when the parameter value is θ(t) yields

ℓ(θ,X) = Q(θ, θ(t))− Eθ(t) [log pθ(Y |X)|X] .

Then,
ℓ(θ,X)− ℓ(θ(t), X) = Q(θ, θ(t))−Q(θ(t), θ(t)) +H(θ, θ(t))−H(θ(t), θ(t)) ,

where
H(θ, θ(t)) = −Eθ(t) [log pθ(Y |X)|X] .

The proof is completed by noting that
H(θ, θ(t))−H(θ(t), θ(t)) ⩾ 0 ,

as this difference is a Kullback-Leibler divergence.

Therefore, we straightforwardly have that the EM algorithm produces a non decreasing sequence of loglikeli-
hoods

(
ℓ(X; θ(t))

)
t
.

Mixture of Gaussians. In the following, X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) where {(Xi, Yi)}1⩽i⩽n

are i.i.d. in Rd × {−1, 1}. For k ∈ {−1, 1}, write πk = P(Y1 = k). Assume that, conditionally on the event
{Y1 = k}, X1 has a Gaussian distribution with mean µk ∈ Rd and covariance matrix Σ ∈ Rd×d. In this case,
the parameter θ = (π1, µ1, µ−1,Σ) belongs to the set Θ = [0, 1]× Rd × Rd × Rd×d.

2. Write the complete data loglikelihood.
Solution.
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The complete data loglikelihood is given by

log pθ (X,Y ) = −
nd

2
log(2π) +

n∑
i=1

∑
k∈{−1,1}

1{Yi=k}

(
log πk −

log detΣ

2
−

1

2
(Xi − µk)

T Σ−1 (Xi − µk)

)
,

= −
nd

2
log(2π)−

n

2
log detΣ +

(
n∑

i=1

1{Yi=1}

)
log π1 +

(
n∑

i=1

1{Yi=−1}

)
log(1− π1)

−
1

2

n∑
i=1

1{Yi=1} (Xi − µ1)
T Σ−1 (Xi − µ1)−

1

2

n∑
i=1

1{Yi=−1} (Xi − µ−1)
T Σ−1 (Xi − µ−1) .

3. Let θ(t) be the current parameter estimate. Compute θ 7→ Q(θ, θ(t)) (tips: use ωi
t = Pθ(t)(Yi = 1|Xi))

Solution.

Write ωi
t = Pθ(t) (Yi = 1|Xi). The intermediate quantity of the EM algorithm is given by

Q(θ, θ(t)) = −
nd

2
log(2π)−

n

2
log detΣ +

(
n∑

i=1

ωi
t

)
log π1 +

n∑
i=1

(
1− ωi

t

)
log(1− π1)

−
1

2

n∑
i=1

ωi
t (Xi − µ1)

T Σ−1 (Xi − µ1)−
1

2

n∑
i=1

(1− ωi
t) (Xi − µ−1)

T Σ−1 (Xi − µ−1) .

4. Compute θ(t+1).
Solution.

The gradient of Q(θ, θ(t)) with respect to θ is therefore given by

∂Q(θ, θ(t))

∂π1
=

∑n
i=1 ω

i
t

π1
−

n−
∑n

i=1 ω
i
t

1− π1
,

∇µ1Q(θ, θ(t)) =
n∑

i=1

ωi
t

(
2Σ−1Xi − 2Σ−1µ1

)
,

∇µ−1Q(θ, θ(t)) =
n∑

i=1

(1− ωi
t)
(
2Σ−1Xi − 2Σ−1µ−1

)
,

∇Σ−1Q(θ, θ(t)) =
n

2
Σ−

1

2

n∑
i=1

ωi
t (Xi − µ1) (Xi − µ1)

T −
1

2

n∑
i=1

(1− ωi
t) (Xi − µ−1) (Xi − µ−1)

T .

Then, θ(t+1) is defined as the only parameter such that all these equations are set to 0. It is given by

π̂
(t+1)
1 =

1

n

n∑
i=1

ωi
t ,

µ̂
(t+1)
1 =

1∑n
i=1 ω

i
t

n∑
i=1

ωi
t Xi , µ̂

(t+1)
−1 =

1

n−
∑n

i=1 ω
i
t

n∑
i=1

(1− ωi
t)Xi ,

Σ̂(t+1) =
1

n

n∑
i=1

ωi
t

(
Xi − µ̂

(t+1)
1

)(
Xi − µ̂

(t+1)
1

)T
+

1

n

n∑
i=1

(1− ωi
t)
(
Xi − µ̂

(t+1)
−1

)(
Xi − µ̂

(t+1)
−1

)T
.

Exercise 2 Let M+
n the space of real-valued n× n symmetric positive matrices. We show

1. Show that the function X 7→ log detX is concave on M+
n .

Solution.

Let X,Y ∈ M+
n and λ ∈ [0, 1]. Since X−1/2Y X−1/2 ∈ M+

n , it is diagonalisable in some orthonormal basis and write
µ1, . . . , µn the (possibly repeated) entries of the diagonal. Note in particular that det

(
X−1/2Y X−1/2

)
=
∏n

i=1 µi.
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Then,

log det ((1− λ)X + λY ) = log det
[
X1/2

(
(1− λ)I + λX−1/2Y X−1/2

)
X1/2

]
= log detX + log det

(
(1− λ)I + λX−1/2Y X−1/2

)
= log detX +

n∑
i=1

log(1− λ+ λµi)

⩾ log detX +
n∑

i=1

(1− λ) log(1)︸ ︷︷ ︸
=0

+λ log(µi) := D

where the last inequality follows from the concavity of the log. Now, rewrite the rhs D as:

D = (1− λ) log detX + λ
(
log detX1/2 + log detX−1/2Y X−1/2 + log detX1/2

)
= (1− λ) log detX + λ log detY

2. The derivative of the real valued function Σ 7→ log det(Σ) defined on Rd×d is given at a Σ which is
symmetric positive by:

∂Σ{log det(Σ)} = Σ−1 ,

where, for all real valued function f defined on Rd×d, ∂Σf(Σ) denotes the Rd×d matrix such that for
all 1 ⩽ i, j ⩽ d, {∂Σf(Σ)}i,j is the partial derivative of f with respect to Σi,j .
Solution.

Recall that for all i ∈ {1, . . . , d} we have det(Σ) =
∑d

k=1 Σi,k∆i,k where ∆i,j is the (i, j)-cofactor associated to Σ.
For any fixed i, j, the component Σi,j does not appear in anywhere in the decomposition

∑d
k=1 Σi,k∆i,k, except for

the term k = j. This implies
∂ log det(Σ)

∂Σi,j
=

1

detΣ

∂det(Σ)

∂Σi,j
=

∆i,j

detΣ

Recalling the identity Σ [∆j,i]1⩽i,j⩽d = (detΣ) Id so that Σ−1 =
[∆i,j ]

T
1⩽i,j⩽d

detΣ
, we finally get[

∂ log det(Σ)

∂Σi,j

]
1⩽i,j⩽d

= (Σ−1)T = Σ−1

where the last equality follows from the fact that Σ is symmetric. □

3


