EXERCISE 1 (EXPECTATION MAXIMIZATION ALGORITHM) In the case where we are interested in estimating unknown parameters $\theta \in \mathbb{R}^m$ characterizing a model with missing data, the Expectation Maximization (EM) algorithm (Dempster et al. 1977) can be used when the joint distribution of the missing data Y and the observed data X is explicit. For all $\theta \in \mathbb{R}^m$, let p_{θ} be the probability density function of (X, Y) when the model is parameterized by θ with respect to a given reference measure μ . The EM algorithm aims at computing iteratively an approximation of the maximum likelihood estimator which maximizes the observed data loglikelihood:

$$\ell(\theta; X) = \log f_{\theta}(X) = \log \int p_{\theta}(X, y) \mu(\mathrm{d}y).$$

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the maximum likelihood estimator by iteratively maximizing the expected complete data loglikelihood. Start with an initial value $\theta^{(0)}$ and let $\theta^{(t)}$ be the estimate at the *t*-th iteration for $t \ge 0$, then the next iteration of EM is decomposed into two steps.

E step. Compute the expectation of the complete data loglikelihood, with respect to the conditional distribution of the missing data given the observed data parameterized by $\theta^{(t)}$:

$$Q(\theta, \theta^{(t)}) = \mathbb{E}_{\theta^{(t)}} \left[\log p_{\theta}(X, Y) | X \right].$$

M step Determine $\theta^{(t+1)}$ by maximizing the function Q:

$$\theta^{(t+1)} \in \operatorname{argmax}_{\theta} Q(\theta, \theta^{(t)})$$
 .

1. Prove the following crucial property, that motivates the EM algorithm. For all $\theta, \theta^{(t)}$,

$$\ell(\theta, X) - \ell(\theta^{(t)}, X) \ge Q(\theta, \theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)}).$$

Solution.

This may be proved by noting that

$$\ell(\theta, X) = \log\left(\frac{p_{\theta}(X, Y)}{p_{\theta}(Y|X)}\right)$$

Considering the conditional expectation of both terms given X when the parameter value is $\theta^{(t)}$ yields

$$\ell(\theta, X) = Q(\theta, \theta^{(t)}) - \mathbb{E}_{\theta^{(t)}}[\log p_{\theta}(Y|X)|X]$$

Then,

$$\ell(\boldsymbol{\theta}, \boldsymbol{X}) - \ell(\boldsymbol{\theta}^{(t)}, \boldsymbol{X}) = Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) - Q(\boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}^{(t)}) + H(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) - H(\boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}^{(t)}),$$

where

$$H(\theta, \theta^{(t)}) = -\mathbb{E}_{q(t)} \left[\log p_{\theta}(Y|X) | X \right].$$

 $H(\theta, \theta^{(t)}) - H(\theta^{(t)}, \theta^{(t)}) \ge 0,$

The proof is completed by noting that

as this difference is a Kullback-Leibler divergence.

Therefore, we straightforwardly have that the EM algorithm produces a non decreasing sequence of loglikelihoods $(\ell(X; \theta^{(t)}))_{\star}$.

Mixture of Gaussians. In the following, $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$ where $\{(X_i, Y_i)\}_{1 \le i \le n}$ are i.i.d. in $\mathbb{R}^d \times \{-1, 1\}$. For $k \in \{-1, 1\}$, write $\pi_k = \mathbb{P}(Y_1 = k)$. Assume that, conditionally on the event $\{Y_1 = k\}$, X_1 has a Gaussian distribution with mean $\mu_k \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$. In this case, the parameter $\theta = (\pi_1, \mu_1, \mu_{-1}, \Sigma)$ belongs to the set $\Theta = [0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times d}$.

2. Write the complete data loglikelihood. **Solution.**

The complete data loglikelihood is given by

$$\begin{split} \log p_{\theta}\left(X,Y\right) &= -\frac{nd}{2}\log(2\pi) + \sum_{i=1}^{n}\sum_{k\in\{-1,1\}}\mathbbm{1}_{\{Y_{i}=k\}}\left(\log\pi_{k} - \frac{\log\det\Sigma}{2} - \frac{1}{2}\left(X_{i} - \mu_{k}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{k}\right)\right),\\ &= -\frac{nd}{2}\log(2\pi) - \frac{n}{2}\log\det\Sigma + \left(\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=1\}}\right)\log\pi_{1} + \left(\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=-1\}}\right)\log(1 - \pi_{1})\\ &- \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=1\}}\left(X_{i} - \mu_{1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{1}\right) - \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=-1\}}\left(X_{i} - \mu_{-1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{-1}\right) \\ &- \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=1\}}\left(X_{i} - \mu_{1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{1}\right) - \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=-1\}}\left(X_{i} - \mu_{-1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{-1}\right) \\ &- \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=1\}}\left(X_{i} - \mu_{1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{1}\right) - \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=-1\}}\left(X_{i} - \mu_{-1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{-1}\right) \\ &- \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=1\}}\left(X_{i} - \mu_{1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{1}\right) - \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=-1\}}\left(X_{i} - \mu_{-1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{-1}\right) \\ &- \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=1\}}\left(X_{i} - \mu_{1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{1}\right) - \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=-1\}}\left(X_{i} - \mu_{-1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{-1}\right) \\ &- \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=1\}}\left(X_{i} - \mu_{1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{1}\right) - \frac{1}{2}\sum_{i=1}^{n}\mathbbm{1}_{\{Y_{i}=-1\}}\left(X_{i} - \mu_{-1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_$$

3. Let $\theta^{(t)}$ be the current parameter estimate. Compute $\theta \mapsto Q(\theta, \theta^{(t)})$ (tips: use $\omega_t^i = \mathbb{P}_{\theta^{(t)}}(Y_i = 1|X_i)$) Solution.

Write $\omega_t^i=\mathbb{P}_{\theta^{(t)}}(Y_i=1|X_i).$ The intermediate quantity of the EM algorithm is given by

$$Q(\theta, \theta^{(t)}) = -\frac{nd}{2}\log(2\pi) - \frac{n}{2}\log\det\Sigma + \left(\sum_{i=1}^{n}\omega_{t}^{i}\right)\log\pi_{1} + \sum_{i=1}^{n}\left(1 - \omega_{t}^{i}\right)\log(1 - \pi_{1}) \\ - \frac{1}{2}\sum_{i=1}^{n}\omega_{t}^{i}\left(X_{i} - \mu_{1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{1}\right) - \frac{1}{2}\sum_{i=1}^{n}\left(1 - \omega_{t}^{i}\right)\left(X_{i} - \mu_{-1}\right)^{T}\Sigma^{-1}\left(X_{i} - \mu_{-1}\right).$$

4. Compute $\theta^{(t+1)}$. Solution.

The gradient of $Q(\theta,\theta^{(t)})$ with respect to θ is therefore given by

$$\begin{split} \frac{\partial Q(\theta, \theta^{(t)})}{\partial \pi_1} &= \frac{\sum_{i=1}^n \omega_t^i}{\pi_1} - \frac{n - \sum_{i=1}^n \omega_t^i}{1 - \pi_1} \,, \\ \nabla_{\mu_1} Q(\theta, \theta^{(t)}) &= \sum_{i=1}^n \omega_t^i \left(2\Sigma^{-1} X_i - 2\Sigma^{-1} \mu_1 \right) \,, \\ \nabla_{\mu_{-1}} Q(\theta, \theta^{(t)}) &= \sum_{i=1}^n (1 - \omega_t^i) \left(2\Sigma^{-1} X_i - 2\Sigma^{-1} \mu_{-1} \right) \,, \\ \nabla_{\Sigma^{-1}} Q(\theta, \theta^{(t)}) &= \frac{n}{2} \Sigma - \frac{1}{2} \sum_{i=1}^n \omega_t^i \left(X_i - \mu_1 \right) \left(X_i - \mu_1 \right)^T - \frac{1}{2} \sum_{i=1}^n (1 - \omega_t^i) \left(X_i - \mu_{-1} \right) \left(X_i - \mu_{-1} \right)^T \,. \end{split}$$

Then, $\theta^{(t+1)}$ is defined as the only parameter such that all these equations are set to 0. It is given by

$$\widehat{\pi}_{1}^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \omega_{t}^{i},$$

$$\widehat{\mu}_{1}^{(t+1)} = \frac{1}{\sum_{i=1}^{n} \omega_{t}^{i}} \sum_{i=1}^{n} \omega_{t}^{i} X_{i}, \quad \widehat{\mu}_{-1}^{(t+1)} = \frac{1}{n - \sum_{i=1}^{n} \omega_{t}^{i}} \sum_{i=1}^{n} (1 - \omega_{t}^{i}) X_{i},$$

$$\widehat{\Sigma}^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \omega_{t}^{i} \left(X_{i} - \widehat{\mu}_{1}^{(t+1)} \right) \left(X_{i} - \widehat{\mu}_{1}^{(t+1)} \right)^{T} + \frac{1}{n} \sum_{i=1}^{n} (1 - \omega_{t}^{i}) \left(X_{i} - \widehat{\mu}_{-1}^{(t+1)} \right) \left(X_{i} - \widehat{\mu}_{-1}^{(t+1)} \right)^{T}.$$

EXERCISE 2 Let M_n^+ the space of real-valued $n \times n$ symmetric positive matrices. We show

1. Show that the function $X \mapsto \log \det X$ is concave on M_n^+ . Solution.

Let $X, Y \in M_n^+$ and $\lambda \in [0, 1]$. Since $X^{-1/2}YX^{-1/2} \in M_n^+$, it is diagonalisable in some orthonormal basis and write μ_1, \ldots, μ_n the (possibly repeated) entries of the diagonal. Note in particular that $\det \left(X^{-1/2}YX^{-1/2}\right) = \prod_{i=1}^n \mu_i$.

Then,

$$\log \det \left((1-\lambda)X + \lambda Y \right) = \log \det \left[X^{1/2} \left((1-\lambda)I + \lambda X^{-1/2}YX^{-1/2} \right) X^{1/2} \right]$$
$$= \log \det X + \log \det \left((1-\lambda)I + \lambda X^{-1/2}YX^{-1/2} \right)$$
$$= \log \det X + \sum_{i=1}^{n} \log(1-\lambda+\lambda\mu_i)$$
$$\geqslant \log \det X + \sum_{i=1}^{n} (1-\lambda) \underbrace{\log(1)}_{=0} + \lambda \log(\mu_i) := D$$

where the last inequality follows from the concavity of the \log . Now, rewrite the rhs D as:

$$D = (1 - \lambda) \log \det X + \lambda \left(\log \det X^{1/2} + \log \det X^{-1/2} Y X^{-1/2} + \log \det X^{1/2} \right)$$
$$= (1 - \lambda) \log \det X + \lambda \log \det Y$$

2. The derivative of the real valued function $\Sigma \mapsto \log \det(\Sigma)$ defined on $\mathbb{R}^{d \times d}$ is given at a Σ which is symmetric positive by:

$$\partial_{\Sigma} \{ \log \det(\Sigma) \} = \Sigma^{-1},$$

where, for all real valued function f defined on $\mathbb{R}^{d \times d}$, $\partial_{\Sigma} f(\Sigma)$ denotes the $\mathbb{R}^{d \times d}$ matrix such that for all $1 \leq i, j \leq d$, $\{\partial_{\Sigma} f(\Sigma)\}_{i,j}$ is the partial derivative of f with respect to $\Sigma_{i,j}$. Solution.

Recall that for all $i \in \{1, ..., d\}$ we have $det(\Sigma) = \sum_{k=1}^{d} \Sigma_{i,k} \Delta_{i,k}$ where $\Delta_{i,j}$ is the (i, j)-cofactor associated to Σ . For any fixed i, j, the component $\Sigma_{i,j}$ does not appear in anywhere in the decomposition $\sum_{k=1}^{d} \Sigma_{i,k} \Delta_{i,k}$, except for the term k = j. This implies ∂

$$\frac{\log \det(\Sigma)}{\partial \Sigma_{i,j}} = \frac{1}{\det \Sigma} \frac{\partial \det(\Sigma)}{\partial \Sigma_{i,j}} = \frac{\Delta_{i,j}}{\det \Sigma}$$

Recalling the identity $\Sigma [\Delta_{j,i}]_{1 \leq i,j \leq d} = (\det \Sigma) I_d$ so that $\Sigma^{-1} = \frac{[\Delta_{i,j}]_{1 \leq i,j \leq d}^T}{\det \Sigma}$, we finally get

$$\left[\frac{\partial \log \det(\Sigma)}{\partial \Sigma_{i,j}}\right]_{1 \leqslant i,j \leqslant d} = (\Sigma^{-1})^T = \Sigma^{-1}$$

where the last equality follows from the fact that Σ is symmetric.