Problem: the i-SIR Markov chain

In all the problem, π , resp. $\tilde{\pi}$, are probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ (where $\mathcal{B}(\mathbb{R})$ is the Borel sigmafield on \mathbb{R}) and we assume that these distributions have **strictly positive densities** with respect to the Lebesgue measure λ . For simplicity, we also denote by π , resp. $\tilde{\pi}$, their densities with respect to λ , that is, $\pi(\mathrm{d}x) = \pi(x)\lambda(\mathrm{d}x) = \pi(x)\mathrm{d}x$ and $\tilde{\pi}(\mathrm{d}x) = \tilde{\pi}(x)\lambda(\mathrm{d}x) = \tilde{\pi}(x)\mathrm{d}x$ where $\boxed{\pi(x) > 0 \text{ and } \tilde{\pi}(x) > 0 \text{ for any } x \in \mathbb{R}}$ and where we recall the abuse of notation $\lambda(\mathrm{d}x) = \mathrm{d}x$.

For integers $i \le j$, the notation [i:j] stands for $\{i,i+1,\ldots,j\}$. Define $w(x) = \frac{\pi(x)}{\tilde{\pi}(x)}$

The i-SIR algorithm with d proposals (also called i-SIR(d)) consists in constructing a Markov chain $\{X_n : n \in \mathbb{N}\}$ starting with initial distribution μ in the following way:

• Draw $X_0 \sim \mu$ where μ is arbitrary

for $k \leftarrow 1$ to n do

- Set $Y_0 = X_{k-1}$ and draw independently d random variables $Y_i \sim \tilde{\pi}$ for $i = 1, \dots, d$.
- Draw a random variable J taking values on [0:d] with probabilities: $\mathbb{P}(J=k) = \frac{w(Y_k)}{\sum_{\ell=0}^d w(Y_\ell)}$ for $k \in [0:d]$.
- Set $X_k = Y_J$.

end

Algorithm 1: the i-SIR(d) algorithm

1. For any bounded measurable function f on \mathbb{R} , show that

$$\mathbb{E}_{u}[f(X_{k})\mathbf{1}_{\{J=0\}}|X_{k-1}] = f(X_{k-1})\beta(X_{k-1})$$

where
$$\beta(x) = \int \cdots \int \frac{w(x)}{w(x) + \sum_{i=1}^d w(y_i)} \tilde{\pi}(\mathrm{d}y_1) \ldots \tilde{\pi}(\mathrm{d}y_d)$$

Solution.

$$f(X_k)\mathbf{1}_{\{J=0\}} = f(X_{k-1})\mathbf{1}_{\{J=0\}}$$
, hence

$$\mathbb{E}_{\mu}[f(X_k)\mathbf{1}_{\{J=0\}}|X_{k-1}] = f(X_{k-1})\mathbb{P}_{\mu}(J=0|X_{k-1}) = f(X_{k-1})\beta(X_{k-1})$$
 where $\beta(x) = \int \cdots \int \frac{w(x)}{w(x) + \sum_{l=1}^{d} w(y_l)} \tilde{\pi}(\mathrm{d}y_l) \ldots \tilde{\pi}(\mathrm{d}y_d)$

2. Show that for any $\ell \in [1:d]$,

$$\mathbb{E}_{\mu}[f(X_k)\mathbf{1}_{\{J=\ell\}}|X_{k-1}] = \int f(y_1) \left(\int \cdots \int \frac{1}{w(X_{k-1}) + \sum_{i=1}^{d} w(y_i)} \tilde{\pi}(\mathrm{d}y_2) \dots \tilde{\pi}(\mathrm{d}y_d) \right) \pi(\mathrm{d}y_1)$$

Solution.

$$\begin{split} \mathbb{E}_{\mu}[f(X_{k})\mathbf{1}_{\{J=\ell\}}|X_{k-1}] &= \mathbb{E}_{\mu}[f(Y_{\ell})\mathbf{1}_{\{J=\ell\}}|X_{k-1}] = \int \cdots \int f(y_{\ell}) \frac{w(y_{\ell})}{w(X_{k-1}) + w(y_{\ell}) + \sum_{i \in [1:d] \setminus \{\ell\}} w(y_{i})} \tilde{\pi}(\mathrm{d}y_{\ell}) \prod_{i \in [1:d] \setminus \{\ell\}} \tilde{\pi}(\mathrm{d}y_{d}) \\ &= \int \cdots \int f(y_{\ell}) \frac{1}{w(X_{k-1}) + w(y_{\ell}) + \sum_{i \in [1:d] \setminus \{\ell\}} w(y_{i})} \pi(\mathrm{d}y_{\ell}) \prod_{i \in [1:d] \setminus \{\ell\}} \tilde{\pi}(\mathrm{d}y_{d}) \end{split}$$

where we have used $w(y_\ell)\tilde{\pi}(\mathrm{d}y_\ell)=\pi(\mathrm{d}y_\ell)$. The proof follows by renaming differently the variables and rearranging the terms

3. Deduce that the Markov kernel *P* of the Markov chain $\{X_k : k \in \mathbb{N}\}$ writes

$$P(x, dy) = \beta(x)\delta_x(dy) + \gamma(x, y)\pi(dy)$$

where $\gamma(x,y)$ should be expressed explicitely. Check that for any $x,y \in \mathbb{R}$, we have $\gamma(x,y) = \gamma(y,x)$ and $\gamma(x,y) > 0$.

Solution.

We have

$$\mathbb{E}_{\mu}(f(X_{k})|X_{k-1}) = \sum_{\ell=0}^{d} \mathbb{E}_{\mu}(f(X_{k})\mathbf{1}_{\{J=\ell\}}|X_{k-1})$$

$$= f(X_{k-1})\beta(X_{k-1}) + d \int \cdots \int f(y_{1}) \frac{1}{w(X_{k-1}) + \sum_{i=1}^{d} w(y_{i})} \pi(\mathrm{d}y_{1})\tilde{\pi}(\mathrm{d}y_{2}) \dots \tilde{\pi}(\mathrm{d}y_{d}) = \int P(X_{k-1}, \mathrm{d}y)f(y)$$

where $P(x, \mathrm{d}y) = \delta_x(\mathrm{d}y)\beta(x) + \pi(\mathrm{d}y)\gamma(x,y)$ and

$$\gamma(x,y) = d \int \cdots \int \frac{1}{w(x) + w(y) + \sum_{j=2}^{d} w(y_j)} \tilde{\pi}(\mathrm{d}y_2) \dots \tilde{\pi}(\mathrm{d}y_d)$$

Obviously, for any $x, y \in \mathbb{R}$, we have $\gamma(x, y) = \gamma(y, x)$ and $\gamma(x, y) > 0$.

4. Show that *P* is π -invariant.

Solution.

We have

$$\pi(\mathrm{d}x)P(x,\mathrm{d}y) = \pi(\mathrm{d}x)[\delta_x(\mathrm{d}y)\beta(x) + \pi(\mathrm{d}y)\gamma(x,y)] = \pi(\mathrm{d}x)\delta_x(\mathrm{d}y)\beta(x) + \pi(\mathrm{d}x)\pi(\mathrm{d}y)\gamma(x,y)$$

Note that for any bounded measurable function h, $\iint h(x,y)\pi(\mathrm{d}x)\delta_x(\mathrm{d}y) = \int h(x,x)\pi(\mathrm{d}x) = \int h(y,y)\pi(\mathrm{d}y) = \iint h(x,y)\pi(\mathrm{d}y)\delta_y(\mathrm{d}x)$, showing that $\pi(\mathrm{d}x)\delta_x(\mathrm{d}y) = \pi(\mathrm{d}y)\delta_y(\mathrm{d}x)$. Moreover, for any $x,y\in\mathbb{R}$, we have $\gamma(x,y)=\gamma(y,x)$, showing that $\pi(\mathrm{d}x)\pi(\mathrm{d}y)\gamma(x,y)=\pi(\mathrm{d}y)\pi(\mathrm{d}x)\gamma(y,x)$. Finally, we get

$$\pi(dx)P(x,dy) = \pi(dy)P(y,dx)$$

The Markov kernel P is therefore π -reversible and hence π -invariant.

5. Is π the unique invariant probability measure for *P*? **Solution.**

By the expression of P, we have $P(x,A) \geqslant \int_A \pi(\mathrm{d}y) \gamma(x,y)$. Hence, since γ is positive, we get that $\pi(A) > 0$ implies that P(x,A) > 0. The Markov kernel P is π -irreducible and therefore admits at most one invariant probability measure. From the previous question, $\pi P = \pi$ and finally, π is the unique invariant probability measure for P.

6. According to which theorem, we can obtain that for any measurable function f such that $\pi(|f|) < \infty$, we have \mathbb{P}_{π} -a.s.

$$\lim_{k \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(X_k) = \pi(f),$$

Solution.

The Markov kernel P admits a unique invariant probability measure, therefore we can apply Birkhoff's ergodic theorem and we get the required result.

7. Let h be a bounded non-negative measurable function such that $\pi(h) = 0$ and Ph(x) = h(x) for any $x \in \mathbb{R}$. Show that for any $x \in \mathbb{R}$, h(x) = 0.

Solution.

From the expression of P, $h(x) = Ph(x) = h(x)\beta(x) + \int h(y)\gamma(x,y)\pi(dy)$. Hence,

$$h(x)(1 - \beta(x)) = \int h(y)\gamma(x, y)\pi(dy) = 0$$

where the last equality follows from $\pi(h) = 0$. Finally $h(x)(1 - \beta(x)) = 0$ for all $x \in \mathbb{R}$. But

$$\beta(x) = \int \cdots \int \frac{w(x)}{w(x) + \sum_{i=1}^{d} w(y_i)} \tilde{\pi}(dy_1) \dots \tilde{\pi}(dy_d) < 1 \quad \text{since } w > 0$$

Finally, we obtain h(x) = 0 for any $x \in \mathbb{R}$.

8. Let f be a measurable function such that $\pi(|f|) < \infty$. Define

$$A = \left\{ \lim_{n \to \infty} \frac{\sum_{i=0}^{n-1} f(X_i)}{n} = \pi(f) \right\}$$

2

For any $x \in \mathbb{R}$, $h(x) = \mathbb{E}_x[\mathbf{1}_{A^c}] = \mathbb{P}_x(A^c)$. We admit that Ph(x) = h(x) for any $x \in \mathbb{R}$. Show that $\pi(h) = 0$. Deduce from the previous questions, that the Law of Large Numbers actually holds for $\{X_n : n \in \mathbb{N}\}$ starting from any initial distribution, that is, for any probability measure ξ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we have $\mathbb{P}_{\xi} - a.s.$,

$$\lim_{n\to\infty}\frac{\sum_{i=0}^{n-1}f(X_i)}{n}=\pi(f)$$

Solution.

We have $\pi(h) = \int \pi(\mathrm{d}x) \mathbb{P}_x(A^c) = \mathbb{P}_{\pi}(A^c) = 0$ where the last equality follows from Question 6. Hence, since Ph = h, the previous question shows that h(x) = 0 for all $x \in \mathbb{R}$. Finally, $\xi(h) = \int \xi(\mathrm{d}x) \mathbb{P}_x(A^c) = \mathbb{P}_{\xi}(A^c) = 0$. This concludes the proof.

9. We now assume that

(A1)
$$\sup_{x \in \mathbb{R}} w(x) = \infty$$

Show that there exists a sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty}\beta(x_n)=1$. **Solution.**

Under (A1), there exists a sequence $\{x_n : n \in \mathbb{N}\}$ such that $\lim_{n \to \infty} w(x_n) = \infty$. Then,

$$\beta(x_n) = \int \cdots \int \underbrace{\frac{w(x_n)}{w(x_n) + \sum_{i=1}^d w(y_i)}}_{g_n(y_{1:d})} \tilde{\pi}(dy_1) \dots \tilde{\pi}(dy_d)$$

We have $g_n(y_{1:d}) \leq 1$ which is integrable wrt the probability measure $\tilde{\pi}(\mathrm{d}y_1)\dots\tilde{\pi}(\mathrm{d}y_d)$. Moreover, $\lim_{n\to\infty}g_n(y_{1:d})=1$. The dominated convergence theorem then shows that

$$\lim_{n\to\infty}\beta(x_n)=\lim_{n\to\infty}\int\cdots\int g_n(y_{1:n})\tilde{\pi}(\mathrm{d}y_1)\ldots\tilde{\pi}(\mathrm{d}y_d)=\int\cdots\int\lim_{n\to\infty}g_n(y_{1:n})\tilde{\pi}(\mathrm{d}y_1)\ldots\tilde{\pi}(\mathrm{d}y_d)=1$$

10. Recall that a Markov kernel P is geometrically ergodic, if there exists a measurable non-negative function $V : \mathbb{R} \to \mathbb{R}^+$ and constants ρ such that $0 < \rho < 1$ satisfying: for any $n \in \mathbb{N}$ and any $x \in \mathbb{R}$,

$$||P^n(x,\cdot) - \pi||_{TV} \leqslant V(x)\rho^n. \tag{1}$$

We will show by contradiction that under condition (A1) (of the previous question), the Markov kernel P cannot be geometrically ergodic. Indeed, using that $\pi(\{x\}) = 0$ for any singleton $\{x\}$, show that (1) implies that for any $x \in \mathbb{R}$ and any $n \in \mathbb{N}$, $2\beta^n(x) \leq V(x)\rho^n$.

Solution.

We have for any $x \in \mathbb{R}$

$$||P^n(x,\cdot) - \pi||_{TV} = 2\sup\{|P^nf(x) - \pi(f)| : f \text{ measurable and } 0 \le f \le 1\}$$

 $\ge 2|P^n(x,\{x\}) - \pi(\{x\})|$

where the last inequality follows by setting $f(u) = \mathbf{1}_{\{x\}}(u) \in [0,1]$. Noting that $\pi(\{x\}) = \int_{\{x\}} \pi(u) du = 0$ (since the Lebesgue measure of a singleton is null), we get $\|P^n(x,\cdot) - \pi\|_{TV} \ge 2P^n(x,\{x\}) \ge 2\mathbb{P}_x(X_1 = x,\dots,X_n = x) = 2\beta^n(x)$. Hence if (1) holds, then for any $x \in \mathbb{R}$ and any $n \in \mathbb{N}$, $2\beta^n(x) \le \|P^n(x,\cdot) - \pi\|_{TV} \le V(x)\rho^n$.

11. Conclude.

Solution.

Since there exists a sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ satisfying $\lim_{n\to\infty}\beta(x_n)=1$, there exists x_\star such that $1>\beta(x_\star)>\rho$. By the previous question, we have for all $n\in\mathbb{N}$,

$$2\left(\frac{\beta(x_{\star})}{\rho}\right)^n \leqslant V(x_{\star})$$

Letting $n \to \infty$, we finally get $\infty \le V(x_*)$ which contradicts $V(x_*) \in \mathbb{R}^+$. By contradiction, we have proved that under (A1), the i-SIR(d) is not geometrically ergodic.