
Problem: the i-SIR Markov chain
In all the problem, π, resp. π̃, are probability measures on (R,B(R)) (where B(R) is the Borel sigma-
field on R) and we assume that these distributions have strictly positive densities with respect to the
Lebesgue measure λ. For simplicity, we also denote by π, resp. π̃, their densities with respect to λ, that is,
π(dx)= π(x)λ(dx)= π(x)dx and π̃(dx)= π̃(x)λ(dx)= π̃(x)dx where π(x)> 0 and π̃(x)> 0 for any x ∈ R
and where we recall the abuse of notation λ(dx) = dx.

For integers i ⩽ j, the notation [i : j] stands for {i, i+1, . . . , j}. Define w(x) = π(x)
π̃(x) .

The i-SIR algorithm with d proposals (also called i-SIR(d)) consists in constructing a Markov chain
{Xn : n ∈ N} starting with initial distribution µ in the following way:

• Draw X0 ∼ µ where µ is arbitrary
for k← 1 to n do
• Set Y0 = Xk−1 and draw independently d random variables Yi ∼ π̃ for i = 1, . . . ,d.
• Draw a random variable J taking values on [0 : d] with probabilities: P(J = k) = w(Yk)

∑
d
ℓ=0 w(Yℓ)

for k ∈ [0 : d].
• Set Xk = YJ .

end
Algorithm 1: the i-SIR(d) algorithm

1. For any bounded measurable function f on R, show that

Eµ[ f (Xk)1{J=0}|Xk−1] = f (Xk−1)β(Xk−1)

where β(x) =
∫
···

∫ w(x)
w(x)+∑

d
i=1 w(yi)

π̃(dy1) . . . π̃(dyd)

Solution.

f (Xk)1{J=0} = f (Xk−1)1{J=0}, hence

Eµ[ f (Xk)1{J=0}|Xk−1] = f (Xk−1)Pµ(J = 0|Xk−1) = f (Xk−1)β(Xk−1)

where β(x) =
∫
···

∫ w(x)
w(x)+∑

d
i=1 w(yi)

π̃(dy1) . . . π̃(dyd)

2. Show that for any ℓ ∈ [1 : d],

Eµ[ f (Xk)1{J=ℓ}|Xk−1] =
∫

f (y1)

(∫
· · ·

∫ 1
w(Xk−1)+∑

d
i=1 w(yi)

π̃(dy2) . . . π̃(dyd)

)
π(dy1)

Solution.

Eµ[ f (Xk)1{J=ℓ}|Xk−1] = Eµ[ f (Yℓ)1{J=ℓ}|Xk−1] =
∫
· · ·

∫
f (yℓ)

w(yℓ)
w(Xk−1)+w(yℓ)+∑i∈[1:d]\{ℓ}w(yi)

π̃(dyℓ) ∏
i∈[1:d]\{ℓ}

π̃(dyd)

=
∫
· · ·

∫
f (yℓ)

1
w(Xk−1)+w(yℓ)+∑i∈[1:d]\{ℓ}w(yi)

π(dyℓ) ∏
i∈[1:d]\{ℓ}

π̃(dyd)

where we have used w(yℓ)π̃(dyℓ) = π(dyℓ). The proof follows by renaming differently the variables and rearranging the
terms.

3. Deduce that the Markov kernel P of the Markov chain {Xk : k ∈ N} writes

P(x,dy) = β(x)δx(dy)+ γ(x,y)π(dy)

where γ(x,y) should be expressed explicitely. Check that for any x,y ∈ R, we have γ(x,y) = γ(y,x)
and γ(x,y)> 0.
Solution.
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We have

Eµ( f (Xk)|Xk−1) =
d

∑
ℓ=0

Eµ( f (Xk)1{J=ℓ}|Xk−1)

= f (Xk−1)β(Xk−1)+d
∫
· · ·

∫
f (y1)

1
w(Xk−1)+∑

d
i=1 w(yi)

π(dy1)π̃(dy2) . . . π̃(dyd) =
∫

P(Xk−1,dy) f (y)

where P(x,dy) = δx(dy)β(x)+π(dy)γ(x,y) and

γ(x,y) = d
∫
· · ·

∫ 1
w(x)+w(y)+∑

d
j=2 w(y j)

π̃(dy2) . . . π̃(dyd)

Obviously, for any x,y ∈ R, we have γ(x,y) = γ(y,x) and γ(x,y)> 0.

4. Show that P is π-invariant.
Solution.

We have
π(dx)P(x,dy) = π(dx)[δx(dy)β(x)+π(dy)γ(x,y)] = π(dx)δx(dy)β(x)+π(dx)π(dy)γ(x,y)

Note that for any bounded measurable function h,
∫∫

h(x,y)π(dx)δx(dy) =
∫

h(x,x)π(dx) =
∫

h(y,y)π(dy) =∫∫
h(x,y)π(dy)δy(dx), showing that π(dx)δx(dy) = π(dy)δy(dx). Moreover, for any x,y ∈ R, we have γ(x,y) = γ(y,x),

showing that π(dx)π(dy)γ(x,y) = π(dy)π(dx)γ(y,x). Finally, we get

π(dx)P(x,dy) = π(dy)P(y,dx)

The Markov kernel P is therefore π-reversible and hence π-invariant.

5. Is π the unique invariant probability measure for P?
Solution.

By the expression of P, we have P(x,A) ⩾
∫

A π(dy)γ(x,y). Hence, since γ is positive, we get that π(A) > 0 implies that
P(x,A)> 0. The Markov kernel P is π-irreducible and therefore admits at most one invariant probability measure. From
the previous question, πP = π and finally, π is the unique invariant probability measure for P.

6. According to which theorem, we can obtain that for any measurable function f such that π(| f |)< ∞,
we have Pπ-a.s.

lim
k→∞

1
n

n−1

∑
k=0

f (Xk) = π( f ),

Solution.

The Markov kernel P admits a unique invariant probability measure, therefore we can apply Birkhoff’s ergodic theorem
and we get the required result.

7. Let h be a bounded non-negative measurable function such that π(h) = 0 and Ph(x) = h(x) for any
x ∈ R. Show that for any x ∈ R, h(x) = 0.
Solution.

From the expression of P, h(x) = Ph(x) = h(x)β(x)+
∫

h(y)γ(x,y)π(dy). Hence,

h(x)(1−β(x)) =
∫

h(y)γ(x,y)π(dy) = 0

where the last equality follows from π(h) = 0. Finally h(x)(1−β(x)) = 0 for all x ∈ R. But

β(x) =
∫
· · ·

∫ w(x)
w(x)+∑

d
i=1 w(yi)

π̃(dy1) . . . π̃(dyd)< 1 since w > 0

Finally, we obtain h(x) = 0 for any x ∈ R.

8. Let f be a measurable function such that π(| f |)< ∞. Define

A =

{
lim
n→∞

∑
n−1
i=0 f (Xi)

n
= π( f )

}
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For any x ∈ R, h(x) = Ex[1Ac ] = Px(Ac). We admit that Ph(x) = h(x) for any x ∈ R. Show that
π(h) = 0. Deduce from the previous questions, that the Law of Large Numbers actually holds
for {Xn : n ∈ N} starting from any initial distribution, that is, for any probability measure ξ on
(R,B(R)), we have Pξ−a.s.,

lim
n→∞

∑
n−1
i=0 f (Xi)

n
= π( f )

Solution.

We have π(h) =
∫

π(dx)Px(Ac) = Pπ(Ac) = 0 where the last equality follows from Question 6. Hence, since Ph = h, the
previous question shows that h(x) = 0 for all x ∈ R. Finally, ξ(h) =

∫
ξ(dx)Px(Ac) = Pξ(Ac) = 0. This concludes the

proof.

9. We now assume that

(A1) supx∈R w(x) = ∞

Show that there exists a sequence of real numbers (xn)n∈N such that limn→∞ β(xn) = 1.
Solution.

Under (A1), there exists a sequence {xn : n ∈ N} such that limn→∞ w(xn) = ∞. Then,

β(xn) =
∫
· · ·

∫ w(xn)

w(xn)+∑
d
i=1 w(yi)︸ ︷︷ ︸

gn(y1:d )

π̃(dy1) . . . π̃(dyd)

We have gn(y1:d)⩽ 1 which is integrable wrt the probability measure π̃(dy1) . . . π̃(dyd). Moreover, limn→∞ gn(y1:d) = 1.
The dominated convergence theorem then shows that

lim
n→∞

β(xn) = lim
n→∞

∫
· · ·

∫
gn(y1:n)π̃(dy1) . . . π̃(dyd) =

∫
· · ·

∫
lim
n→∞

gn(y1:n)π̃(dy1) . . . π̃(dyd) = 1

10. Recall that a Markov kernel P is geometrically ergodic, if there exists a measurable non-negative
function V : R→ R+ and constants ρ such that 0 < ρ < 1 satisfying: for any n ∈ N and any x ∈ R,

∥Pn(x, ·)−π∥TV ⩽V (x)ρn. (1)

We will show by contradiction that under condition (A1) (of the previous question), the Markov
kernel P cannot be geometrically ergodic. Indeed, using that π({x}) = 0 for any singleton {x}, show
that (1) implies that for any x ∈ R and any n ∈ N, 2βn(x)⩽V (x)ρn.
Solution.

We have for any x ∈ R

∥Pn(x, ·)−π∥TV = 2sup{|Pn f (x)−π( f )| : f measurable and 0 ⩽ f ⩽ 1}
⩾ 2|Pn(x,{x})−π({x})|

where the last inequality follows by setting f (u) = 1{x}(u) ∈ [0,1]. Noting that π({x}) =
∫
{x} π(u)du = 0 (since the

Lebesgue measure of a singleton is null), we get ∥Pn(x, ·)− π∥TV ⩾ 2Pn(x,{x}) ⩾ 2Px(X1 = x, . . . ,Xn = x) = 2βn(x).
Hence if (1) holds, then for any x ∈ R and any n ∈ N, 2βn(x)⩽ ∥Pn(x, ·)−π∥TV ⩽V (x)ρn.

11. Conclude.
Solution.

Since there exists a sequence of real numbers (xn)n∈N satisfying limn→∞ β(xn) = 1, there exists x⋆ such that 1> β(x⋆)> ρ.
By the previous question, we have for all n ∈ N,

2
(

β(x⋆)
ρ

)n

⩽V (x⋆)

Letting n→ ∞, we finally get ∞ ⩽ V (x⋆) which contradicts V (x⋆) ∈ R+. By contradiction, we have proved that under
(A1), the i-SIR(d) is not geometrically ergodic.
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