Problem: the i-SIR Markov chain

In all the problem, π , resp. $\tilde{\pi}$, are probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ (where $\mathcal{B}(\mathbb{R})$ is the Borel sigmafield on \mathbb{R}) and we assume that these distributions have **strictly positive densities** with respect to the Lebesgue measure λ . For simplicity, we also denote by π , resp. $\tilde{\pi}$, their densities with respect to λ , that is, $\pi(\mathrm{d}x) = \pi(x)\lambda(\mathrm{d}x) = \pi(x)\mathrm{d}x$ and $\tilde{\pi}(\mathrm{d}x) = \tilde{\pi}(x)\lambda(\mathrm{d}x) = \tilde{\pi}(x)\mathrm{d}x$ where $\boxed{\pi(x) > 0 \text{ and } \tilde{\pi}(x) > 0 \text{ for any } x \in \mathbb{R}}$ and where we recall the abuse of notation $\lambda(\mathrm{d}x) = \mathrm{d}x$.

For integers $i \le j$, the notation [i:j] stands for $\{i,i+1,\ldots,j\}$. Define $w(x) = \frac{\pi(x)}{\tilde{\pi}(x)}$

The i-SIR algorithm with d proposals (also called i-SIR(d)) consists in constructing a Markov chain $\{X_n : n \in \mathbb{N}\}$ starting with initial distribution μ in the following way:

• Draw $X_0 \sim \mu$ where μ is arbitrary

for $k \leftarrow 1$ to n do

- Set $Y_0 = X_{k-1}$ and draw independently d random variables $Y_i \sim \tilde{\pi}$ for $i = 1, \dots, d$.
- Draw a random variable J taking values on [0:d] with probabilities: $\mathbb{P}(J=k) = \frac{w(Y_k)}{\sum_{\ell=0}^d w(Y_\ell)}$ for $k \in [0:d]$.
- Set $X_k = Y_J$.

end

Algorithm 1: the i-SIR(d) algorithm

1. For any bounded measurable function f on \mathbb{R} , show that

$$\mathbb{E}_{\mu}[f(X_k)\mathbf{1}_{\{J=0\}}|X_{k-1}] = f(X_{k-1})\beta(X_{k-1})$$

where
$$\beta(x) = \int \cdots \int \frac{w(x)}{w(x) + \sum_{i=1}^{d} w(y_i)} \tilde{\pi}(dy_1) \dots \tilde{\pi}(dy_d)$$

2. Show that for any $\ell \in [1:d]$,

$$\mathbb{E}_{\mu}[f(X_k)\mathbf{1}_{\{J=\ell\}}|X_{k-1}] = \int f(y_1) \left(\int \cdots \int \frac{1}{w(X_{k-1}) + \sum_{i=1}^{d} w(y_i)} \tilde{\pi}(\mathrm{d}y_2) \dots \tilde{\pi}(\mathrm{d}y_d) \right) \pi(\mathrm{d}y_1)$$

3. Deduce that the Markov kernel *P* of the Markov chain $\{X_k : k \in \mathbb{N}\}$ writes

$$P(x, dy) = \beta(x)\delta_x(dy) + \gamma(x, y)\pi(dy)$$

where $\gamma(x,y)$ should be expressed explicitely. Check that for any $x,y \in \mathbb{R}$, we have $\gamma(x,y) = \gamma(y,x)$ and $\gamma(x,y) > 0$.

- 4. Show that *P* is π -invariant.
- 5. Is π the unique invariant probability measure for *P*?
- 6. According to which theorem, we can obtain that for any measurable function f such that $\pi(|f|) < \infty$, we have \mathbb{P}_{π} -a.s.

$$\lim_{k\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(X_k)=\pi(f),$$

- 7. Let h be a bounded non-negative measurable function such that $\pi(h) = 0$ and Ph(x) = h(x) for any $x \in \mathbb{R}$. Show that for any $x \in \mathbb{R}$, h(x) = 0.
- 8. Let f be a measurable function such that $\pi(|f|) < \infty$. Define

$$A = \left\{ \lim_{n \to \infty} \frac{\sum_{i=0}^{n-1} f(X_i)}{n} = \pi(f) \right\}$$

For any $x \in \mathbb{R}$, $h(x) = \mathbb{E}_x[\mathbf{1}_{A^c}] = \mathbb{P}_x(A^c)$. We admit that Ph(x) = h(x) for any $x \in \mathbb{R}$. Show that $\pi(h) = 0$. Deduce from the previous questions, that the Law of Large Numbers actually holds for $\{X_n : n \in \mathbb{N}\}$ starting from any initial distribution, that is, for any probability measure ξ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we have $\mathbb{P}_{\xi} - a.s.$,

$$\lim_{n\to\infty}\frac{\sum_{i=0}^{n-1}f(X_i)}{n}=\pi(f)$$

9. We now assume that

(A1)
$$\sup_{x \in \mathbb{R}} w(x) = \infty$$

Show that there exists a sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty}\beta(x_n)=1$.

10. Recall that a Markov kernel P is geometrically ergodic, if there exists a measurable non-negative function $V : \mathbb{R} \to \mathbb{R}^+$ and constants ρ such that $0 < \rho < 1$ satisfying: for any $n \in \mathbb{N}$ and any $x \in \mathbb{R}$,

$$||P^n(x,\cdot) - \pi||_{TV} \leqslant V(x)\rho^n. \tag{1}$$

We will show by contradiction that under condition (A1) (of the previous question), the Markov kernel P cannot be geometrically ergodic. Indeed, using that $\pi(\{x\}) = 0$ for any singleton $\{x\}$, show that (1) implies that for any $x \in \mathbb{R}$ and any $n \in \mathbb{N}$, $2\beta^n(x) \leq V(x)\rho^n$.

11. Conclude.