Markov Chains, complementary notes

September 19, 2022

We recall that for a sequence $\left(a_{k}\right)_{k \geqslant 0}$, we denote $a_{k: n}=\left(a_{k}, a_{k+1}, \ldots, a_{n}\right)$ and $a_{k: \infty}=$ $\left(a_{k}, a_{k+1}, \ldots, a_{k+j}, \ldots\right)$. We also recall that $h: \mathrm{X} \rightarrow \mathbb{R}$ is called a simple function, if $h=$ $\sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{A_{i}}$, where $A_{i} \in \mathcal{X}$ and $\alpha_{i} \in \mathbb{R}$.

1 Reminders

1.1 Conditional probabilities

Let $(X, \mathcal{X}, \mathbb{P})$ be probability space. If $A \in \mathcal{X}$, then the following equality holds.

$$
\mathbb{P}(A)=\mathbb{E}\left[\mathbb{1}_{A}\right] .
$$

Similarly if $\mathcal{F} \subset \mathcal{X}$ is a (sub)- σ-algebra, then we define the conditional probability (relatively to \mathcal{F}) as:

$$
\mathbb{P}\left(\mathbb{1}_{A} \mid \mathcal{F}\right)=\mathbb{E}\left[\mathbb{1}_{A} \mid \mathcal{F}\right] .
$$

Recall that, given an integrable random variable X and a (sub)- σ-algebra $\mathcal{F}, \mathbb{E}[X \mid \mathcal{F}]$ is a \mathcal{F}-measurable random variable that satisfies:

$$
\forall B \in \mathcal{F}, \quad \mathbb{E}\left[X \mathbb{1}_{B}\right]=\mathbb{E}\left[\mathbb{E}[X \mid \mathcal{F}] \mathbb{1}_{B}\right] .
$$

1.2 Product σ-algebras

Let $(\mathrm{X}, \mathcal{X})$ be a measurable space. The product σ-algebra $\mathcal{X} \otimes \mathcal{X}$ is defined as follows:

$$
\mathcal{X}^{\otimes 2}=\mathcal{X} \otimes \mathcal{X}:=\sigma(\{A \times B: A, B \in \mathcal{X}\}) .
$$

With this definition $\left(X^{2}, \mathcal{X}^{\otimes 2}\right)$ is a measurable space. Similarly, for $k>0$, we define:

$$
\mathcal{X}^{\otimes k}:=\sigma\left(\left\{A_{1} \times A_{2} \times \cdots \times A_{k}: A_{1}, A_{2}, \ldots, A_{k} \in \mathcal{X}\right\}\right) .
$$

With this definition $\left(\mathrm{X}^{k}, \mathcal{X}^{\otimes k}\right)$ is a measurable space.
Finally, to define a σ-algebra on the infinite product $X^{\mathbb{N}}$, we need the following definition.
Definition 1. We say that $C \in X^{\mathbb{N}}$ is a cylinder, if there is $k \in \mathbb{N}$ and $A_{1}, \ldots, A_{k} \in \mathcal{X}$, such that:

$$
C=\prod_{i=1}^{n} A_{i} \times \mathrm{X} \times \mathrm{X} \times \cdots \times \mathrm{X} \times \cdots=\prod_{i=1}^{n} A_{i} \times \mathrm{X}^{\mathbb{N}}
$$

The cylindrical σ-algebra, $\mathcal{X}^{\otimes \mathbb{N}}$, is then defined as:

$$
\mathcal{X}^{\otimes \mathbb{N}}=\sigma(\{C: C \text { is a cylinder }\}) .
$$

With this definition $\left(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}\right)$ is a measurable space.

$1.3 \pi-\lambda$ theorem

Reminder: π-system. Let \mathcal{A} be a collection of subsets in X . We say that \mathcal{A} is a π-system, if it is non-empty and is stable by finite intersection. I.e. if $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$.

Reminder: λ-system. We say that \mathcal{A}, a collection of subsets in X , is a λ-system if the following holds.

1. $\varnothing \in \mathcal{A}$.
2. If $A \in \mathcal{A}$, then $A^{c} \in \mathcal{A}$.
3. If $\left(A_{i}\right)_{i \in \mathbb{N}}$ is a collection of disjoint elements in \mathcal{A}, then $\bigcup_{i=0}^{\infty} A_{i} \in \mathcal{A}$.

Theorem 1 ($\pi-\lambda$ theorem). If $\mathcal{A}_{\pi} \subset \mathcal{A}_{\lambda}$, with \mathcal{A}_{π} (respectively \mathcal{A}_{λ}) a π-system (resp. λ system), then $\sigma\left(\mathcal{A}_{\pi}\right) \subset \mathcal{A}_{\lambda}$.

Corollary 1. Let $(\mathrm{X}, \mathcal{X})$ be a probability space and ν, μ two probability measures on it. If μ, ν agree on, \mathcal{A}, a π-system, then, they agree on $\sigma(\mathcal{A})$.

Proof. Denote $\Lambda=\{A \in \mathcal{X}: \mu(A)=\nu(A)\}$. Λ is a λ system, and $\mathcal{A} \subset \Lambda$. Thus, applying Theorem 1, we obtain that $\sigma(\mathcal{A}) \subset \Lambda$, which completes the proof.

It is easy to see that for $k \in \mathbb{N}$, the collection of sets $\left\{A \in \mathcal{X}^{\otimes k}: A=A_{1} \times \cdots \times\right.$ A_{k}, with $\left.A_{i} \in \mathcal{X}\right\}$ form a π-system that generates $\mathcal{X}^{\otimes k}$.

Furthermore, the cylinders form a generating π-system of $\mathcal{X} \otimes \mathbb{N}$. We will use both of these results in the next section.

2 Markov kernels

In this section we provide additional results that complete the proofs of Chapter 1 of the course. The main idea of all of these proofs is to show the given equation (e.g. Markov property) for some simple functions/sets and then apply the $\pi-\lambda$ theorem, to prove the given equation for all functions/sets.

2.1 Proof of Lemma 1.4.

In the course-notes it was shown that for any $n \in \mathbb{N}$ and measurable, bounded functions $h_{0}, h_{1}, \ldots, h_{n}: \mathrm{X} \rightarrow \mathbb{R}$ it holds that:

$$
\mathbb{E}\left[\prod_{i=0}^{n} h_{i}\left(X_{i}\right)\right]=\int_{\mathrm{X}^{n+1}} \prod_{i=0}^{n} h_{i}\left(x_{i}\right) \nu\left(\mathrm{d} x_{0}\right) \prod_{i=1}^{n} P\left(x_{i-1}, \mathrm{~d} x_{i}\right) .
$$

In particular, this holds for $h_{0}, h_{1}, \ldots, h_{n}:=\mathbb{1}_{A_{0}}, \mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{n}}$, with $A_{i} \in \mathcal{X}$. Thus, if $A=A_{0} \times \cdots \times A_{n}$, with $A_{i} \in \mathcal{X}$, then:

$$
\begin{align*}
\mathbb{P}\left(\mathbb{1}_{A}\left(X_{0: n}\right)\right) & =\int_{\mathbf{X}^{n+1}} \nu\left(\mathrm{~d} x_{0}\right) \prod_{i=0}^{n} \mathbb{1}_{A_{i}}\left(x_{n}\right) \prod_{i=1}^{n} P\left(x_{i-1}, \mathrm{~d} x_{i}\right) \\
& =\int_{\mathbf{X}^{n+1}} \nu\left(\mathrm{~d} x_{0}\right) \mathbb{1}_{A}\left(x_{0: n}\right) \prod_{i=1}^{n} P\left(x_{i-1}, \mathrm{~d} x_{i}\right) \tag{1}
\end{align*}
$$

Equation (1) shows that the law of $X_{0: n}$ agrees with the probability measure $\nu\left(\mathrm{d} x_{0}\right) \prod_{i=1}^{n} P\left(x_{i-1}, \mathrm{~d} x_{i}\right)$ on the events of the form $A=A_{0} \times \cdots \times A_{n}$, with $A_{i} \in \mathcal{X}$. As explained in Section 1.3 these sets form a π-system and thus applying Corollary 1 we obtain that both of the laws agree on the whole $\mathcal{X}^{\otimes n+1}$

2.2 Proofs for Section 1.3.2 of the course notes

We admitted (see Theorem 1.5 of the course notes), that for every $\nu \in \mathcal{M}_{+}(X)$ and a Markov kernel P, there is a probability measure \mathbb{P}_{ν}, such that the coordinates processes $\left(X_{k}\right)_{k \geqslant 0}$, where $X_{k}\left(w_{0: \infty}\right)=w_{k}$, is a Markov chain with initial distribution ν and a kernel P on $\left(X^{\mathbb{N}}, \mathcal{X} \otimes \mathbb{N}, \mathbb{P}_{\nu}\right)$.

We want to prove the following link between \mathbb{P}_{ν} and \mathbb{P}_{x} (recall that \mathbb{P}_{x} is the notation of $\mathbb{P}_{\delta_{x}}$, where δ_{x} is the dirac probability measure at x)

$$
\begin{equation*}
\mathbb{P}_{\nu}(A)=\int_{\mathrm{X}} \nu(\mathrm{~d} x) \mathbb{P}_{x}(A) \tag{2}
\end{equation*}
$$

Notice that for Equation (2) to make sense we also need to prove that the mapping $x \mapsto$ $\mathbb{P}_{x}(A)$ is $\mathcal{B}([0,1]) / \mathcal{X}$ measurable.

We have the following proposition.
Proposition 1. For all $A \in \mathcal{X}^{\otimes \mathbb{N}}$, the following holds:

1. The mapping $x \mapsto \mathbb{P}_{x}(A)$ is $\mathcal{B}([0,1]) / \mathcal{X}$ measurable.
2. $\mathbb{P}_{\nu}(A)=\int_{\mathrm{X}} \nu(\mathrm{d} x) \mathbb{P}_{x}(A)$.

Proof. The proof will be done in two steps.
1 st step. The collection of sets that satisfy both points is a λ-system.
2nd step. Both points are true for cylinders.
Since the set of cylinders is a π-system that generates $\mathcal{X}^{\otimes \mathbb{N}}$ (see Section 1.3), applying the $\pi-\lambda$ theorem will prove the proposition.

The proof of the first step immediately follows from the definition of a λ-system.
To prove the second step, we will prove by induction a slightly stronger result:

$$
\begin{array}{r}
\forall n \geqslant 0 \text { and } h_{0}, \ldots, h_{n}: \mathbf{X} \mapsto \mathbb{R} \text { bounded and measurable : } \\
x \mapsto \mathbb{E}_{x}\left[\prod_{i=0}^{n} h_{i}\left(X_{i}\right)\right] \text { is measurable } \tag{3}\\
\mathbb{E}_{\nu}\left[\prod_{i=0}^{n} h_{i}\left(X_{0}\right)\right]=\int_{\mathbf{X}} \nu(\mathrm{d} x) \mathbb{E}_{x}\left[\prod_{i=0}^{n} h_{i}\left(X_{i}\right)\right] .
\end{array}
$$

Indeed, if we prove (3), then choosing $h_{i}=\mathbb{1}_{A_{i}}$ this will imply the second step.
For $n=0$, the property is immediate, since $\mathbb{E}_{x}\left[h_{i}\left(X_{0}\right)\right]=h_{i}(x)$. Therefore, assume that the property is true for $n \geqslant 0$, we have that:

$$
\begin{aligned}
\mathbb{E}_{x}\left[\prod_{i=0}^{n+1} h_{i}\left(X_{i}\right)\right] & =h_{0}(x) \int_{\mathrm{X}}^{n+1} P\left(x, \mathrm{~d} x_{1}\right) \prod_{i=1}^{n} h_{i}\left(x_{i}\right) P\left(x_{i}, \mathrm{~d} x_{i+1}\right) h\left(x_{n+1}\right) \\
& =h_{0}(x) \int_{\mathrm{X}}^{n+1} P\left(x, \mathrm{~d} x_{1}\right) \prod_{i=1}^{n} h_{i}\left(x_{i}\right) \prod_{j=1}^{n-1} P\left(x_{j}, \mathrm{~d} x_{j+1}\right) P h\left(x_{n}\right) \\
& =\mathbb{E}_{x}\left[\operatorname{Ph}\left(X_{n}\right) \prod_{i=0}^{n} h_{i}\left(X_{i}\right)\right],
\end{aligned}
$$

where the second equality is obtained by integrating through x_{n+1}. Thus the last equality allows us to apply the induction and we obtain that $x \mapsto \mathbb{E}_{x}\left[\prod_{i=0}^{n+1} h_{i}\left(X_{i}\right)\right]$ is measurable.

Furthermore,

$$
\begin{aligned}
\int_{\mathbf{X}} \nu(\mathrm{d} x) \mathbb{E}_{x}\left[\prod_{i=0}^{n+1} h_{i}\left(X_{i}\right)\right] & =\int_{\mathbf{X}} \nu(\mathrm{d} x) \mathbb{E}_{x}\left[P h\left(X_{n}\right) \prod_{i=0}^{n} h_{i}\left(X_{i}\right)\right] \\
& =\mathbb{E}_{\nu}\left[P h\left(X_{n}\right) \prod_{i=0}^{n} h_{i}\left(X_{i}\right)\right] \\
& =\int_{\mathbf{X}^{n+1}} h_{i}\left(x_{0}\right) \nu\left(\mathrm{d} x_{0}\right) \prod_{i=1}^{n} h_{i}\left(x_{i}\right) P\left(x_{i-1}, \mathrm{~d} x_{i}\right) P h_{n+1}\left(x_{n}\right) \\
& =\int_{\mathbf{X}^{n+2}} h_{i}\left(x_{0}\right) \nu\left(\mathrm{d} x_{0}\right) \prod_{i=1}^{n} h_{i}\left(x_{i}\right) P\left(x_{i-1}, \mathrm{~d} x_{i}\right) h\left(x_{n+1}\right) P\left(x_{n}, \mathrm{~d} x_{n+1}\right) \\
& =\int_{\mathbf{X}^{n+2}} h_{i}\left(x_{0}\right) \nu\left(\mathrm{d} x_{0}\right) \prod_{i=1}^{n+1} h_{i}\left(x_{i}\right) \\
& =\mathbb{E}_{\nu}\left[\prod_{i=0}^{n+1} h_{i}\left(X_{i}\right)\right] .
\end{aligned}
$$

where the second equality comes from the induction property.
Thus, the statement (3) is proved, which completes the proof of this proposition.

2.3 Markov property

For $k \in \mathbb{N}$, let $X_{k}: \mathrm{X}^{\mathbb{N}} \rightarrow \mathrm{X}$, be defined as $X_{k}\left(w_{0: \infty}\right)=w_{k}$. For ν a probability measure on (X, \mathcal{X}) and a kernel P on (X, \mathcal{X}), let \mathbb{P}_{ν} be the probability measure on $\left(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}\right)$ such that $\left(X_{k}\right)$ is a Markov chain with initial distribution ν and a kernel P.

The Markov's property states that for a bounded or non-negative, measurable function $h: \mathrm{X}^{\mathbb{N}} \rightarrow \mathbb{R}$, and for $k \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{E}_{\nu}\left[h\left(X_{k: \infty}\right) \mid \sigma\left(X_{0: k}\right)\right]=\mathbb{E}_{X_{k}}\left[h\left(X_{0: \infty}\right)\right], \quad \mathbb{P}_{\nu} \text { almost surely. } \tag{4}
\end{equation*}
$$

We stress that both of the terms of the equality are \mathcal{F}_{k}-measurable random variables, where given $w \in X^{\mathbb{N}}$, the right-hand term becomes $\mathbb{E}_{X_{k}(w)}\left[h\left(X_{0: \infty}\right)\right]$: the expectation of $h\left(X_{0: \infty}\right)$ if the initial distribution of $\left(X_{k}\right)$ was a dirac in $X_{k}(w)$.

The proof of the Markov's property will be done in four steps.
First step. The Markov's property is valid if $h\left(X_{0: \infty}\right)=h_{0}\left(X_{0}\right)$, where $h_{0}: \mathrm{X} \rightarrow \mathbb{R}$ is measurable and bounded or non-negative.

Second step. The Markov's property is valid if $h\left(X_{0: \infty}\right)=\prod_{i=0}^{n} h_{i}\left(X_{i}\right)$, where each h_{i} : $X \rightarrow \mathbb{R}$ is measurable and bounded or non-negative.

Third step. Notice that the set of cylinders is a π-system and the set of $A \in \mathcal{X}^{\otimes \mathbb{N}}$ such that the Markov's property is valid for $\mathbb{1}_{A}$ is a λ-system. Thus, applying the π - λ theorem and the second step, we obtain that the Markov's property is valid for $h=\mathbb{1}_{A}$, with $A \in \mathcal{X}^{\otimes \mathbb{N}}$.

Fourth step. Finally, any measurable, bounded or non-negative $h: X^{\mathbb{N}} \rightarrow \mathbb{R}$ can written as an increasing limit of simple functions. Applying the monotone convergence theorem, combined with the third step, completes the proof for arbitrary h.
Lemma 1. Let $h: \mathrm{X} \rightarrow \mathbb{R}$ be measurable, for $k \in \mathbb{N}$, it holds that

$$
\begin{equation*}
\mathbb{E}_{\nu}\left[h\left(X_{k+1}\right) \mid \sigma\left(X_{0: k}\right)\right]=\mathbb{E}_{X_{k}}\left[h\left(X_{1}\right)\right]=\int_{\mathbf{X}} h(y) P\left(X_{k}, \mathrm{~d} y\right)=P h\left(X_{k}\right) . \tag{5}
\end{equation*}
$$

Proof. Notice that Equation (4) immediatel holds for $h=\mathbb{1}_{A}$ by the definition of a Markov chain. Furthermore, any bounded or non-negative measurable function h can be written as a simple function. In other words, there is a sequence of real numbers $\left(\alpha_{k}\right)$ and a sequence of measurable sets $\left(A_{k}\right)$ such that:

$$
\sum_{i=0}^{n} \alpha_{i} \mathbb{1}_{A_{i}} \uparrow_{i} h
$$

Thus, Equation (5) follows from the monotone convergence theorem.
Lemma 2. For any $k, j \in \mathbb{N}$ and any bounded or non-negative measurable functions h_{0}, \ldots, h_{j} : $\mathrm{X} \rightarrow \mathbb{R}$, it holds that:
$\mathbb{E}\left[\prod_{i=0}^{j} h_{i}\left(X_{k+i}\right) \mid \mathcal{F}_{k}\right]=h_{0}\left(X_{k}\right) \int_{X^{j}} P\left(X_{k}, \mathrm{~d} x_{1}\right) \prod_{i=1}^{j} h_{i}\left(x_{j}\right) \prod_{i=1}^{j} P\left(x_{i-1}, \mathrm{~d} x_{i}\right)=\mathbb{E}_{X_{k}}\left[\prod_{i=0}^{j} h_{i}\left(X_{i}\right)\right]$,
where $\mathcal{F}_{k}=\sigma\left(X_{0: k}\right)$
Proof. Fixing $k \in \mathbb{N}$, we will prove this lemma by induction on $j \in \mathbb{N}$. For $j=0$, the result is immediate. Thus, assume that the result holds for some $j \geqslant 0$. Write down:

$$
\begin{aligned}
\mathbb{E}\left[\prod_{i=0}^{j+1} h_{i}\left(X_{k+i}\right) \mid \mathcal{F}_{k}\right] & =\mathbb{E}\left[\mathbb{E}\left[h_{j+1}\left(X_{k+j+1}\right) \mid \mathcal{F}_{k+j}\right] \prod_{i=0}^{j} h_{i}\left(X_{k+i}\right)\right] \\
& =\mathbb{E}\left[P h_{j+1}\left(X_{k+j}\right) \prod_{i=0}^{j} h_{i}\left(X_{k+i}\right)\right],
\end{aligned}
$$

where the last equality comes from Lemma 1 . Notice that in the last term, the expression under the expectation can be rewritten as $\prod_{i=0}^{j} \tilde{h}_{i}\left(X_{k+i}\right)$, where $\tilde{h_{j}}=h_{j} P h_{j+1}$ and $\tilde{h_{i}}=h_{i}$ for $i<j$. Thus, we can apply the induction property and obtain:

$$
\begin{aligned}
\mathbb{E}\left[\prod_{i=0}^{j+1} h_{i}\left(X_{k+i}\right) \mid \mathcal{F}_{k}\right] & =\mathbb{E}_{X_{k}}\left[\prod_{i=0}^{j} \tilde{h}_{i}\left(X_{i}\right)\right] \\
& =\mathbb{E}_{X_{k}}\left[\prod_{i=0}^{j+1} h_{i}\left(X_{i}\right)\right]
\end{aligned}
$$

Finally, the sets $A \in \mathcal{X}^{\otimes \mathbb{N}}$ of the form $A=A_{0} \times A_{1} \times \ldots A_{n} \times \mathrm{X}^{\mathbb{N}}$ (the cylinders) form a π-system that generate $\mathcal{X}^{\otimes \mathbb{N}}$. By Lemma 2, the Markov's property is satisfied for the functions $h=\mathbb{1}_{A}$, where A is a cylinder. Furthermore, the set of A such that the Markov's property is satisfied is a λ-system. Thus, applying the $\pi-\lambda$ theorem, we have that the Markov's property is satisfied for $\mathbb{1}_{A}$, with A any element of $\mathcal{X}^{\otimes \mathbb{N}}$. Thus, it is also satisfied for simple functions ${ }^{1}$. Finally, since any measurable function $h: \mathcal{X} \otimes \mathbb{N} \rightarrow \mathbb{R}$ can be written as an increasing limit of simple functions, applying the monotone convergence theorem we obtain the Markov's property for all measurable $h: X^{\mathbb{N}} \rightarrow \mathbb{R}$.

$$
\begin{aligned}
\mathbb{P}\left(X_{0: n} \in A\right)=\mathbb{E}\left[\mathbb{1}_{A}\left(X_{0: n}\right)\right]=\mathbb{E}\left[\prod_{i=0}^{n} \mathbb{1}_{A_{i}}\left(X_{i}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{A_{n}}\left(X_{n}\right) \mid \mathscr{F}_{n-1}\right] \prod_{i=0}^{n-1} \mathbb{1}_{A_{i}}\left(X_{i}\right)\right] \\
& =\mathbb{E}\left[P\left(X_{n-1}, A_{n}\right) \prod_{i=0}^{n-1} \mathbb{1}_{A_{i}}\left(X_{i}\right)\right]
\end{aligned}
$$

and we apply the induction.
Thus the equality of laws hold for any cylinder, which are a π-system. If two measures agree on a π-system, then they agree on the whole space.

[^0]
[^0]: ${ }^{1} h$ is a simple function if it can be written as a linear combination of indicators: $\sum_{i=0}^{k} \alpha_{k} \mathbb{1}_{A_{k}}$, where α_{i} is some real number.

