Markov Chains, complementary notes

September 19, 2022

We recall that for a sequence (ay)k>0, we denote ag.,, = (ag,ags+1,-.-,0n) and ap.o =
(@k, Qks1,-- -, kgj,--- ). We also recall that h : X — R is called a simple function, if h =
Dol where A; € X and o € R.

1 Reminders

1.1 Conditional probabilities
Let (X, X,P) be probability space. If A € X, then the following equality holds.
P(A) = E[14].
Similarly if 7 < X is a (sub)-o-algebra, then we define the conditional probability (rela-
tively to F) as:
P(14|F) = E[14]F].

Recall that, given an integrable random variable X and a (sub)-o-algebra F, E[X|F] is a
F-measurable random variable that satisfies:

VBe F, E[X1p]=E[E[X|F]15].

1.2 Product o-algebras
Let (X, &) be a measurable space. The product o-algebra X ® X is defined as follows:
X2 = XX :=c({AxB:A BeX}).
With this definition (X2, X®2) is a measurable space. Similarly, for k > 0, we define:
XOF = g({A] x Ag x - x A : Ay, Ag, ... Ay € X}).

With this definition (X¥, X®*) is a measurable space.
Finally, to define a o-algebra on the infinite product XY, we need the following definition.

Definition 1. We say that C € XN is a cylinder, if there is k € N and Ay,..., A, € X, such

that:
n n
C = AixXxXx---xXx---:HAixXN.
i=1 i=1
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The cylindrical o-algebra, XY®N | is then defined as:
A®N = 5({C: Cis a cylinder}).

With this definition (XN, X®N) is a measurable space.

1.3 -\ theorem

Reminder: mw-system. Let A be a collection of subsets in X. We say that A is a m-system, if
it is non-empty and is stable by finite intersection. L.e. if A, B € A, then A n B € A.

Reminder: A-system. We say that A, a collection of subsets in X, is a A-system if the
following holds.

1. e A
2. If Ae A, then A€ A.
3. If (A;)en is a collection of disjoint elements in A, then U;‘io A; e A

Theorem 1 (m-A theorem). If Ar < Ay, with Ay (respectively Ax) a m-system (resp. A-
system), then o(Az) < Aj.

Corollary 1. Let (X, X) be a probability space and v, two probability measures on it. If u,v
agree on, A, a mw-system, then, they agree on o(A).

Proof. Denote A = {A € X : u(A) = v(A)}. Ais a X system, and A < A. Thus, applying
Theorem 1, we obtain that o(A) A, which completes the proof. O

It is easy to see that for k € N, the collection of sets {4 € X® : A = A3 x .-+ x
Ay, with A; € X} form a m-system that generates X®F,

Furthermore, the cylinders form a generating m-system of XY®N. We will use both of these
results in the next section.

2 Markov kernels

In this section we provide additional results that complete the proofs of Chapter 1 of the
course. The main idea of all of these proofs is to show the given equation (e.g. Markov
property) for some simple functions/sets and then apply the 7-A theorem, to prove the given
equation for all functions/sets.

2.1 Proof of Lemma 1.4.

In the course-notes it was shown that for any n € N and measurable, bounded functions
ho,hi,...,hy : X —> R it holds that:

] LnHHh x;)v(dzo) EP xi—1,dx;) .
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In particular, this holds for hg, hi,...,hy = 1a,,14a,,...,14,, with A; € X. Thus, if
A=Ay x---xA,, with A; € X, then:

Mham»=f

Xn+1

v(dao) | [1a,(zn) [ [ P(i1, dxs)
i=0 . i=1 (1>

= J;(nH V(dxo)ﬂA(xo;n) H P(%‘—l’ dxi) .

i=1

=

Equation (1) shows that the law of Xo., agrees with the probability measure v(dzo) [ [\ P(xi—1, dz;)
on the events of the form A = Ag x --- x A,, with A; € X. As explained in Section 1.3 these
sets form a w-system and thus applying Corollary 1 we obtain that both of the laws agree on
the whole A®n+1

2.2 Proofs for Section 1.3.2 of the course notes

We admitted (see Theorem 1.5 of the course notes), that for every v € M, (X) and a Markov
kernel P, there is a probability measure IP,,, such that the coordinates processes (X )r>0, where
X1 (Wo.00) = Wy, is a Markov chain with initial distribution v and a kernel P on (XY, XY®N P,).

We want to prove the following link between P, and P, (recall that P, is the notation of
Ps,, where d, is the dirac probability measure at z)

Pu(4) = | vda)Pu(4). @)

X

Notice that for Equation (2) to make sense we also need to prove that the mapping = —
P,(A) is B([0,1])/X measurable.
We have the following proposition.

Proposition 1. For all A e X®N | the following holds:
1. The mapping x — Py(A) is B([0,1])/X measurable.
2. Py(A) = §yv(dz)P,(A).

Proof. The proof will be done in two steps.
1st step. The collection of sets that satisfy both points is a A-system.
2nd step. Both points are true for cylinders.
Since the set of cylinders is a m-system that generates X®" (see Section 1.3), applying the
-\ theorem will prove the proposition.
The proof of the first step immediately follows from the definition of a A-system.
To prove the second step, we will prove by induction a slightly stronger result:

Vn = 0 and hyg, ..., h, : X— R bounded and measurable :

z— E, [H hi(Xi)] is measurable
i=0

E, [H hi(XO)] =f v(dz)E, [H hi(Xi)] .
i=0

i=0 %S



Indeed, if we prove (3), then choosing h; = 14, this will imply the second step.
For n = 0, the property is immediate, since E;[h;(Xo)] = hi(z). Therefore, assume that
the property is true for n > 0, we have that:

n+l n+1 n
EI [H hz(X'L)] = ho(ﬂ?)J (ZE dl‘l 1_[ I’LZ $1>P($Z, d$i+1)h(l‘n+1)
1=0 =1

X

n+1 n n—1
= hg(.’E)J P(z,dx;) th H (xj,dzjr1)Ph(xy)

S
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.
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where the second equality is obtained by integrating through ;1. Thus the last equality
allows us to apply the induction and we obtain that z — E, | ]/ hi(Xi)] is measurable.
Furthermore, )

n+1
L v(dz)E, [11) hi(Xl-)] = L v(daz)E,

where the second equality comes from the induction property.
Thus, the statement (3) is proved, which completes the proof of this proposition.

2.3 Markov property

For k e N, let X}, : XN — X, be defined as X},(wo.0) = wg. For v a probability measure on
(X,X) and a kernel P on (X,X), let P, be the probability measure on (XN, XY®N) such that
(Xk) is a Markov chain with initial distribution v and a kernel P.

The Markov’s property states that for a bounded or non-negative, measurable function
h:XN S R, and for k € N,

E,[h(Xk:0)|o(Xok)] = Ex, [(Xo0:0)], P almost surely. (4)

We stress that both of the terms of the equality are Fi-measurable random variables, where
given w € XN, the right-hand term becomes Ex, (w)[A(Xo:0)]: the expectation of h(Xo.o0) if
the initial distribution of (Xj) was a dirac in Xy (w).



The proof of the Markov’s property will be done in four steps.

First step. The Markov’s property is valid if h(Xo.0) = ho(Xo), where hg : X — R is
measurable and bounded or non-negative.

Second step. The Markov’s property is valid if h(Xo.0) = [[;— hi(X;), where each h; :
X — R is measurable and bounded or non-negative.

Third step. Notice that the set of cylinders is a m-system and the set of A € X®N such
that the Markov’s property is valid for 1 4 is a A-system. Thus, applying the m-A theorem and
the second step, we obtain that the Markov’s property is valid for h = 14, with A € X®N,

Fourth step. Finally, any measurable, bounded or non-negative h : XN — R can written
as an increasing limit of simple functions. Applying the monotone convergence theorem,
combined with the third step, completes the proof for arbitrary h.

Lemma 1. Let h : X — R be measurable, for k € N, it holds that
Ey [M(Xg11)l0(Xox)] = Ex, [A(X1)] = L h(y)P(Xg, dy) = Ph(Xk) . (5)

Proof. Notice that Equation (4) immediatel holds for A = 14 by the definition of a Markov
chain. Furthermore, any bounded or non-negative measurable function h can be written as a
simple function. In other words, there is a sequence of real numbers (ax) and a sequence of
measurable sets (Ag) such that:

n

Z a;la, Tih

i=0

Thus, Equation (5) follows from the monotone convergence theorem. O

Lemma 2. For any k, j € N and any bounded or non-negative measurable functions ho, ..., h;
X — R, it holds that:

E [H hz(Xk+l)|fk] = hO(Xk)J (Xk,dflfl th T 5 HP(mi_l,dxi) = EXk [H hz(Xz)] y
i=1 =0

i=0 X3 i=1
where Fi, = 0(Xo:x)

Proof. Fixing k € N, we will prove this lemma by induction on j € N. For j = 0, the result is
immediate. Thus, assume that the result holds for some j > 0. Write down:

Jj+1 J
E [H hi(kam] -E [E[hm(ka Wi | [ Pi( Xk ]
=0

i=0
=E [Phj+1<Xk+j) th‘(Xk+i)] ;
i=0
where the last equality comes from Lemma 1. Notice that in the last term, the expression

under the expectation can be rewritten as [ [/_j hi(Xk4;), where h~j = h;jPhj;1 and h; = h;
for ¢ < j. Thus, we can apply the induction property and obtain:

j+1
E [H hi(XkH)‘]:k] =Ex, [ ]
- =
=Ex, [H Z(Xl)]
i=0

’:]Q
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Finally, the sets A € X®N of the form A = Ay x Ay x ... A, x XY (the cylinders) form a
m-system that generate XY®N. By Lemma 2, the Markov’s property is satisfied for the functions
h = 14, where A is a cylinder. Furthermore, the set of A such that the Markov’s property is
satisfied is a A-system. Thus, applying the m-A theorem, we have that the Markov’s property
is satisfied for 14, with A any element of X®N. Thus, it is also satisfied for simple functions
1. Finally, since any measurable function h : X®¥ — R can be written as an increasing limit
of simple functions, applying the monotone convergence theorem we obtain the Markov’s
property for all measurable h : XN — R.

P(XO:n € A) = E[HA(XOn)] =E

—?
=
>
=
.
Il

n—1
E [E[]lAn (Xn)|Fua] | ] 14, (Xi)]
=0

E

n—1
P(anla An) 1_[ :[]‘Ai (Xl)]
1=0

and we apply the induction.
Thus the equality of laws hold for any cylinder, which are a w-system. If two measures
agree on a mw-system, then they agree on the whole space. O

'h is a simple function if it can be written as a linear combination of indicators: Do axla,, where oy is
some real number.
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