Markov Chains, complementary notes

September 19, 2022

We recall that for a sequence $(a_k)_{k\geq 0}$, we denote $a_{k:n} = (a_k, a_{k+1}, \ldots, a_n)$ and $a_{k:\infty} = (a_k, a_{k+1}, \ldots, a_{k+j}, \ldots)$. We also recall that $h : \mathsf{X} \to \mathbb{R}$ is called a simple function, if $h = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$, where $A_i \in \mathcal{X}$ and $\alpha_i \in \mathbb{R}$.

1 Reminders

1.1 Conditional probabilities

Let $(X, \mathcal{X}, \mathbb{P})$ be probability space. If $A \in \mathcal{X}$, then the following equality holds.

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{1}_A].$$

Similarly if $\mathcal{F} \subset \mathcal{X}$ is a (sub)- σ -algebra, then we define the conditional probability (relatively to \mathcal{F}) as:

$$\mathbb{P}(\mathbb{1}_A | \mathcal{F}) = \mathbb{E}[\mathbb{1}_A | \mathcal{F}].$$

Recall that, given an integrable random variable X and a (sub)- σ -algebra \mathcal{F} , $\mathbb{E}[X|\mathcal{F}]$ is a \mathcal{F} -measurable random variable that satisfies:

$$\forall B \in \mathcal{F}, \quad \mathbb{E}[X \mathbb{1}_B] = \mathbb{E}[\mathbb{E}[X | \mathcal{F}] \mathbb{1}_B].$$

1.2 Product σ -algebras

Let (X, \mathcal{X}) be a measurable space. The product σ -algebra $\mathcal{X} \otimes \mathcal{X}$ is defined as follows:

$$\mathcal{X}^{\otimes 2} = \mathcal{X} \otimes \mathcal{X} := \sigma(\{A \times B : A, B \in \mathcal{X}\}).$$

With this definition $(X^2, \mathcal{X}^{\otimes 2})$ is a measurable space. Similarly, for k > 0, we define:

$$\mathcal{X}^{\otimes k} := \sigma(\{A_1 \times A_2 \times \cdots \times A_k : A_1, A_2, \dots, A_k \in \mathcal{X}\}).$$

With this definition $(\mathsf{X}^k, \mathcal{X}^{\otimes k})$ is a measurable space.

Finally, to define a σ -algebra on the infinite product $X^{\mathbb{N}}$, we need the following definition.

Definition 1. We say that $C \in X^{\mathbb{N}}$ is a cylinder, if there is $k \in \mathbb{N}$ and $A_1, \ldots, A_k \in \mathcal{X}$, such that:

$$C = \prod_{i=1}^{n} A_i \times \mathsf{X} \times \mathsf{X} \times \cdots \times \mathsf{X} \times \cdots = \prod_{i=1}^{n} A_i \times \mathsf{X}^{\mathbb{N}}.$$

The cylindrical σ -algebra, $\mathcal{X}^{\otimes \mathbb{N}}$, is then defined as:

$$\mathcal{X}^{\otimes \mathbb{N}} = \sigma(\{C : C \text{ is a cylinder}\}).$$

With this definition $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}})$ is a measurable space.

1.3 π - λ theorem

Reminder: π -system. Let \mathcal{A} be a collection of subsets in X. We say that \mathcal{A} is a π -system, if it is non-empty and is stable by finite intersection. I.e. if $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$.

Reminder: λ -system. We say that \mathcal{A} , a collection of subsets in X, is a λ -system if the following holds.

- 1. $\emptyset \in \mathcal{A}$.
- 2. If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.
- 3. If $(A_i)_{i \in \mathbb{N}}$ is a collection of disjoint elements in \mathcal{A} , then $\bigcup_{i=0}^{\infty} A_i \in \mathcal{A}$.

Theorem 1 (π - λ theorem). If $\mathcal{A}_{\pi} \subset \mathcal{A}_{\lambda}$, with \mathcal{A}_{π} (respectively \mathcal{A}_{λ}) a π -system (resp. λ -system), then $\sigma(\mathcal{A}_{\pi}) \subset \mathcal{A}_{\lambda}$.

Corollary 1. Let (X, \mathcal{X}) be a probability space and ν, μ two probability measures on it. If μ, ν agree on, \mathcal{A} , a π -system, then, they agree on $\sigma(\mathcal{A})$.

Proof. Denote $\Lambda = \{A \in \mathcal{X} : \mu(A) = \nu(A)\}$. Λ is a λ system, and $\mathcal{A} \subset \Lambda$. Thus, applying Theorem 1, we obtain that $\sigma(\mathcal{A}) \subset \Lambda$, which completes the proof.

It is easy to see that for $k \in \mathbb{N}$, the collection of sets $\{A \in \mathcal{X}^{\otimes k} : A = A_1 \times \cdots \times A_k$, with $A_i \in \mathcal{X}\}$ form a π -system that generates $\mathcal{X}^{\otimes k}$.

Furthermore, the cylinders form a generating π -system of $\mathcal{X}^{\otimes \mathbb{N}}$. We will use both of these results in the next section.

2 Markov kernels

In this section we provide additional results that complete the proofs of Chapter 1 of the course. The main idea of all of these proofs is to show the given equation (e.g. Markov property) for some simple functions/sets and then apply the π - λ theorem, to prove the given equation for all functions/sets.

2.1 Proof of Lemma 1.4.

In the course-notes it was shown that for any $n \in \mathbb{N}$ and measurable, bounded functions $h_0, h_1, \ldots, h_n : \mathsf{X} \to \mathbb{R}$ it holds that:

$$\mathbb{E}\left[\prod_{i=0}^{n} h_i(X_i)\right] = \int_{\mathsf{X}^{n+1}} \prod_{i=0}^{n} h_i(x_i)\nu(\mathrm{d}x_0) \prod_{i=1}^{n} P(x_{i-1}, \mathrm{d}x_i) \,.$$

In particular, this holds for $h_0, h_1, \ldots, h_n := \mathbb{1}_{A_0}, \mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_n}$, with $A_i \in \mathcal{X}$. Thus, if $A = A_0 \times \cdots \times A_n$, with $A_i \in \mathcal{X}$, then:

$$\mathbb{P}(\mathbb{1}_{A}(X_{0:n})) = \int_{\mathsf{X}^{n+1}} \nu(\mathrm{d}x_{0}) \prod_{i=0}^{n} \mathbb{1}_{A_{i}}(x_{n}) \prod_{i=1}^{n} P(x_{i-1}, \mathrm{d}x_{i})$$

$$= \int_{\mathsf{X}^{n+1}} \nu(\mathrm{d}x_{0}) \mathbb{1}_{A}(x_{0:n}) \prod_{i=1}^{n} P(x_{i-1}, \mathrm{d}x_{i}).$$
(1)

Equation (1) shows that the law of $X_{0:n}$ agrees with the probability measure $\nu(dx_0) \prod_{i=1}^n P(x_{i-1}, dx_i)$ on the events of the form $A = A_0 \times \cdots \times A_n$, with $A_i \in \mathcal{X}$. As explained in Section 1.3 these sets form a π -system and thus applying Corollary 1 we obtain that both of the laws agree on the whole $\mathcal{X}^{\otimes n+1}$

2.2 Proofs for Section 1.3.2 of the course notes

We admitted (see Theorem 1.5 of the course notes), that for every $\nu \in \mathcal{M}_+(\mathsf{X})$ and a Markov kernel P, there is a probability measure \mathbb{P}_{ν} , such that the coordinates processes $(X_k)_{k \ge 0}$, where $X_k(w_{0:\infty}) = w_k$, is a Markov chain with initial distribution ν and a kernel P on $(\mathsf{X}^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, \mathbb{P}_{\nu})$.

We want to prove the following link between \mathbb{P}_{ν} and \mathbb{P}_{x} (recall that \mathbb{P}_{x} is the notation of $\mathbb{P}_{\delta_{x}}$, where δ_{x} is the dirac probability measure at x)

$$\mathbb{P}_{\nu}(A) = \int_{\mathsf{X}} \nu(\mathrm{d}x) \mathbb{P}_{x}(A) \,. \tag{2}$$

Notice that for Equation (2) to make sense we also need to prove that the mapping $x \mapsto \mathbb{P}_x(A)$ is $\mathcal{B}([0,1])/\mathcal{X}$ measurable.

We have the following proposition.

Proposition 1. For all $A \in \mathcal{X}^{\otimes \mathbb{N}}$, the following holds:

- 1. The mapping $x \mapsto \mathbb{P}_x(A)$ is $\mathcal{B}([0,1])/\mathcal{X}$ measurable.
- 2. $\mathbb{P}_{\nu}(A) = \int_{\mathsf{X}} \nu(\mathrm{d}x) \mathbb{P}_{x}(A).$

Proof. The proof will be done in two steps.

1st step. The collection of sets that satisfy both points is a λ -system.

2nd step. Both points are true for cylinders.

Since the set of cylinders is a π -system that generates $\mathcal{X}^{\otimes \mathbb{N}}$ (see Section 1.3), applying the π - λ theorem will prove the proposition.

The proof of the first step immediately follows from the definition of a λ -system.

To prove the second step, we will prove by induction a slightly stronger result:

$$\forall n \ge 0 \text{ and } h_0, \dots, h_n : \mathsf{X} \mapsto \mathbb{R} \text{ bounded and measurable } :$$

$$x \mapsto \mathbb{E}_x \left[\prod_{i=0}^n h_i(X_i) \right] \text{ is measurable}$$

$$\mathbb{E}_\nu \left[\prod_{i=0}^n h_i(X_0) \right] = \int_{\mathsf{X}} \nu(\mathrm{d}x) \mathbb{E}_x \left[\prod_{i=0}^n h_i(X_i) \right].$$
(3)

Indeed, if we prove (3), then choosing $h_i = \mathbb{1}_{A_i}$ this will imply the second step.

For n = 0, the property is immediate, since $\mathbb{E}_x[h_i(X_0)] = h_i(x)$. Therefore, assume that the property is true for $n \ge 0$, we have that:

$$\mathbb{E}_{x}\left[\prod_{i=0}^{n+1} h_{i}(X_{i})\right] = h_{0}(x) \int_{\mathsf{X}}^{n+1} P(x, \mathrm{d}x_{1}) \prod_{i=1}^{n} h_{i}(x_{i}) P(x_{i}, \mathrm{d}x_{i+1}) h(x_{n+1})$$
$$= h_{0}(x) \int_{\mathsf{X}}^{n+1} P(x, \mathrm{d}x_{1}) \prod_{i=1}^{n} h_{i}(x_{i}) \prod_{j=1}^{n-1} P(x_{j}, \mathrm{d}x_{j+1}) Ph(x_{n})$$
$$= \mathbb{E}_{x}\left[Ph(X_{n}) \prod_{i=0}^{n} h_{i}(X_{i}) \right],$$

where the second equality is obtained by integrating through x_{n+1} . Thus the last equality allows us to apply the induction and we obtain that $x \mapsto \mathbb{E}_x \left[\prod_{i=0}^{n+1} h_i(X_i) \right]$ is measurable.

Furthermore,

$$\begin{split} \int_{\mathbf{X}} \nu(\mathrm{d}x) \mathbb{E}_{x} \left[\prod_{i=0}^{n+1} h_{i}(X_{i}) \right] &= \int_{\mathbf{X}} \nu(\mathrm{d}x) \mathbb{E}_{x} \left[Ph(X_{n}) \prod_{i=0}^{n} h_{i}(X_{i}) \right] \\ &= \mathbb{E}_{\nu} \left[Ph(X_{n}) \prod_{i=0}^{n} h_{i}(X_{i}) \right] \\ &= \int_{\mathbf{X}^{n+1}} h_{i}(x_{0}) \nu(\mathrm{d}x_{0}) \prod_{i=1}^{n} h_{i}(x_{i}) P(x_{i-1}, \mathrm{d}x_{i}) Ph_{n+1}(x_{n}) \\ &= \int_{\mathbf{X}^{n+2}} h_{i}(x_{0}) \nu(\mathrm{d}x_{0}) \prod_{i=1}^{n} h_{i}(x_{i}) P(x_{i-1}, \mathrm{d}x_{i}) h(x_{n+1}) P(x_{n}, \mathrm{d}x_{n+1}) \\ &= \int_{\mathbf{X}^{n+2}} h_{i}(x_{0}) \nu(\mathrm{d}x_{0}) \prod_{i=1}^{n+1} h_{i}(x_{i}) \\ &= \mathbb{E}_{\nu} \left[\prod_{i=0}^{n+1} h_{i}(X_{i}) \right]. \end{split}$$

where the second equality comes from the induction property.

Thus, the statement (3) is proved, which completes the proof of this proposition.

2.3 Markov property

For $k \in \mathbb{N}$, let $X_k : \mathsf{X}^{\mathbb{N}} \to \mathsf{X}$, be defined as $X_k(w_{0:\infty}) = w_k$. For ν a probability measure on $(\mathsf{X}, \mathcal{X})$ and a kernel P on $(\mathsf{X}, \mathcal{X})$, let \mathbb{P}_{ν} be the probability measure on $(\mathsf{X}^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}})$ such that (X_k) is a Markov chain with initial distribution ν and a kernel P.

The Markov's property states that for a bounded or non-negative, measurable function $h: X^{\mathbb{N}} \to \mathbb{R}$, and for $k \in \mathbb{N}$,

$$\mathbb{E}_{\nu}[h(X_{k:\infty})|\sigma(X_{0:k})] = \mathbb{E}_{X_k}[h(X_{0:\infty})], \quad \mathbb{P}_{\nu} \text{ almost surely.}$$
(4)

We stress that both of the terms of the equality are \mathcal{F}_k -measurable random variables, where given $w \in \mathsf{X}^{\mathbb{N}}$, the right-hand term becomes $\mathbb{E}_{X_k(w)}[h(X_{0:\infty})]$: the expectation of $h(X_{0:\infty})$ if the initial distribution of (X_k) was a dirac in $X_k(w)$. The proof of the Markov's property will be done in four steps.

First step. The Markov's property is valid if $h(X_{0:\infty}) = h_0(X_0)$, where $h_0 : X \to \mathbb{R}$ is measurable and bounded or non-negative.

Second step. The Markov's property is valid if $h(X_{0:\infty}) = \prod_{i=0}^{n} h_i(X_i)$, where each $h_i : X \to \mathbb{R}$ is measurable and bounded or non-negative.

Third step. Notice that the set of cylinders is a π -system and the set of $A \in \mathcal{X}^{\otimes \mathbb{N}}$ such that the Markov's property is valid for $\mathbb{1}_A$ is a λ -system. Thus, applying the π - λ theorem and the second step, we obtain that the Markov's property is valid for $h = \mathbb{1}_A$, with $A \in \mathcal{X}^{\otimes \mathbb{N}}$.

Fourth step. Finally, any measurable, bounded or non-negative $h : X^{\mathbb{N}} \to \mathbb{R}$ can written as an increasing limit of simple functions. Applying the monotone convergence theorem, combined with the *third step*, completes the proof for arbitrary h.

Lemma 1. Let $h : \mathsf{X} \to \mathbb{R}$ be measurable, for $k \in \mathbb{N}$, it holds that

$$\mathbb{E}_{\nu}[h(X_{k+1})|\sigma(X_{0:k})] = \mathbb{E}_{X_k}[h(X_1)] = \int_{\mathsf{X}} h(y)P(X_k, \mathrm{d}y) = Ph(X_k) \,.$$
(5)

Proof. Notice that Equation (4) immediatel holds for $h = \mathbb{1}_A$ by the definition of a Markov chain. Furthermore, any bounded or non-negative measurable function h can be written as a simple function. In other words, there is a sequence of real numbers (α_k) and a sequence of measurable sets (A_k) such that:

$$\sum_{i=0}^{n} \alpha_i \mathbb{1}_{A_i} \uparrow_i h.$$

Thus, Equation (5) follows from the monotone convergence theorem.

Lemma 2. For any $k, j \in \mathbb{N}$ and any bounded or non-negative measurable functions h_0, \ldots, h_j : $X \to \mathbb{R}$, it holds that:

$$\mathbb{E}\left[\prod_{i=0}^{j} h_i(X_{k+i})|\mathcal{F}_k\right] = h_0(X_k) \int_{\mathsf{X}^j} P(X_k, \mathrm{d}x_1) \prod_{i=1}^{j} h_i(x_j) \prod_{i=1}^{j} P(x_{i-1}, \mathrm{d}x_i) = \mathbb{E}_{X_k}\left[\prod_{i=0}^{j} h_i(X_i)\right],$$

where $\mathcal{F}_k = \sigma(X_{0:k})$

Proof. Fixing $k \in \mathbb{N}$, we will prove this lemma by induction on $j \in \mathbb{N}$. For j = 0, the result is immediate. Thus, assume that the result holds for some $j \ge 0$. Write down:

$$\mathbb{E}\left[\prod_{i=0}^{j+1} h_i(X_{k+i})|\mathcal{F}_k\right] = \mathbb{E}\left[\mathbb{E}[h_{j+1}(X_{k+j+1})|\mathcal{F}_{k+j}]\prod_{i=0}^j h_i(X_{k+i})\right]$$
$$= \mathbb{E}\left[Ph_{j+1}(X_{k+j})\prod_{i=0}^j h_i(X_{k+i})\right],$$

where the last equality comes from Lemma 1. Notice that in the last term, the expression under the expectation can be rewritten as $\prod_{i=0}^{j} \tilde{h}_i(X_{k+i})$, where $\tilde{h}_j = h_j P h_{j+1}$ and $\tilde{h}_i = h_i$ for i < j. Thus, we can apply the induction property and obtain:

$$\mathbb{E}\left[\prod_{i=0}^{j+1} h_i(X_{k+i}) | \mathcal{F}_k\right] = \mathbb{E}_{X_k}\left[\prod_{i=0}^{j} \tilde{h}_i(X_i)\right]$$
$$= \mathbb{E}_{X_k}\left[\prod_{i=0}^{j+1} h_i(X_i)\right]$$

Finally, the sets $A \in \mathcal{X}^{\otimes \mathbb{N}}$ of the form $A = A_0 \times A_1 \times \ldots A_n \times \mathbb{X}^{\mathbb{N}}$ (the cylinders) form a π -system that generate $\mathcal{X}^{\otimes \mathbb{N}}$. By Lemma 2, the Markov's property is satisfied for the functions $h = \mathbb{1}_A$, where A is a cylinder. Furthermore, the set of A such that the Markov's property is satisfied is a λ -system. Thus, applying the π - λ theorem, we have that the Markov's property is satisfied for $\mathbb{1}_A$, with A any element of $\mathcal{X}^{\otimes \mathbb{N}}$. Thus, it is also satisfied for simple functions ¹. Finally, since any measurable function $h : \mathcal{X}^{\otimes \mathbb{N}} \to \mathbb{R}$ can be written as an increasing limit of simple functions, applying the monotone convergence theorem we obtain the Markov's property for all measurable $h : \mathbb{X}^{\mathbb{N}} \to \mathbb{R}$.

$$\mathbb{P}(X_{0:n} \in A) = \mathbb{E}[\mathbb{1}_A(X_{0:n})] = \mathbb{E}\left[\prod_{i=0}^n \mathbb{1}_{A_i}(X_i)\right] = \mathbb{E}\left[\mathbb{E}[\mathbb{1}_{A_n}(X_n)|\mathscr{F}_{n-1}]\prod_{i=0}^{n-1}\mathbb{1}_{A_i}(X_i)\right]$$
$$= \mathbb{E}\left[P(X_{n-1}, A_n)\prod_{i=0}^{n-1}\mathbb{1}_{A_i}(X_i)\right]$$

and we apply the induction.

Thus the equality of laws hold for any cylinder, which are a π -system. If two measures agree on a π -system, then they agree on the whole space.

6

¹h is a simple function if it can be written as a linear combination of indicators: $\sum_{i=0}^{k} \alpha_k \mathbb{1}_{A_k}$, where α_i is some real number.