Problem

Let

* 1t(dy) = m(y)dy be probability measure on (R, B(R)). As stressed by the expression ©t(dy) = nt(y)dy,
we assume that the measure 7 has a density on R with respect to the Lebesgue measure and by abuse
of notation, we will also call & this density.

* &(dy) = ¢(y)dy be another probability measure on (R, B(R)). Again, the expression ¢(dy) = ¢(y)dy
means that we assume that the measure ¢ has a density on R with respect to the Lebesgue measure
and by abuse of notation, we will also call ¢ this density.

In all the exercise, we assume that we can draw according to ¢ and that there exists a constant € > 0 such
that

\ (A1) VxeR, xn(x)>ed(x)> o\

We now construct a family of random variables (Z;);>¢ in the following way.
input :n
output: 7y, ...,7Z,

Att =0, draw Zy ~ u where u is arbitrary
fort < 1tondo
e Draw independently, U; ~ Unif(0,1) and ¥; ~ ¢

Zi ifU > B(Z-1)

Letting B : R —]0, 1| be the function B = & /m, we set Z; =
" Letting P 0, [ be the function P =eb/m we set 2 {Y, if U < B(Z-1)

end

QUESTIONS

1. For any bounded measurable function / : R — R, write E[h(Z;)|Z,_]. Deduce the expression of the
Markov kernel P; associated to the Markov chain (Z )en.
Solution.

For any bounded measurable function z : R — R, we have
E[h(Z)|Z—1] = E[M(Zi-1 )1y, >pz,_) [ Ze—1 ] + E[R(Y) 1y, <p(z,_ )1 Zi-1]
— h(Zi)(1 = B(Zi1) + B(Zic) [ 90)h(3)d
= [ 10~ B )82, (@) + BZ-1)00)] h(y)
= [P ani)

where

Py (x,dy) = (1= B(x))8x(dy) + B(x)¢(y)dy

2. Show that the Markov kernel P, is m-reversible.
Solution.

For any measurable function / : R> — R,

[r@op ity = [ 8.(dy) + ()0 <>>dy]< »)
:/n xx+/ ( )h(x,y)dxdy
/Tt xx+£/¢ YO (y)h(x,y)dxdy




Similarly,
[r@0Pi (x.dhey) = [ ()1 =BODA) + [00I0M(r.y)dxdy

so that (dx)P; (x,dy) = n(dy)P; (y,dx) and P; is m-reversible.

3. Show that 7 is the unique invariant probability measure for Pj.
Solution.

For all (x,A) € R x B(R) such that §(A) = [, ¢(x)dx > 0, we have

Pi(x,4) > B(x) / 0(y)dy = B(x)o(4) > 0

since B(x) > 0 for any x € R. Applying Proposition 2.10, we deduce that P; admits at most one invariant probability
measure. Since it is T-reversible, it is also m-invariant. Therefore, T is the unique invariant probability measure for P;.
|

4. Let h: R — R be a bounded measurable function such that Pi4 = h. Then, show that /4 is constant.
Solution.

For all x € R,
h(x) = Prh(x) = (1= B(x))h(x) +B(x) /¢(Y)h(Y)dy
which is equivalent to B(x)h(x) = B(x) [ ¢(y)h(y)dy. Dividing by B(x) (since B(x) > 0), we get that / is constant. O

5. Let (Zx)ken be a Markov chain with Markov kernel P;. Let f : R — R be a measurable function such
that 7| f|) < eo. Define

n—1
A=< limn 'Y f(Z) =n(f)
k=0

n—oo

Setting h(x) = E,[14¢] = P+ (A°), we admit that Pih = h (it is actually proved in the Lecture Notes).
Deduce from the previous question that the Law of Large Numbers holds for (Z;)en starting from
any initial distribution, i.e. for any probability measure & on (R, B(R)),

n—1
lim ! Zf(Zk) =n(f), Pr—as.

Solution.

Since P; admits a unique invariant probability measure 7, the asssociated dynamical system is ergodic and the Birkhoff
theorem then shows that Pr(A) = 1 or equivalently Pr(A°) = 0. Then, 0 = [n(dx)P(A°) = [n(dx)h(x). Now, since
Pih = h and h is bounded, the previous question shows that / is constant. Combining with ©t(h) = 0, we get h(x) = 0 for
all x € R. Hence, for probability measure  on (R, B(R)),

Pe(4%) = [ &) =0

which is equivalent to ¢ (A) = 1 and the proof is completed. O



We now let

* Q(x,dy) = g(x,y)dy be a Markov kernel on R x B(R). Thus, we assume that Q admits the Markov
kernel density g with respect to the Lebesgue measure.

e Py be the Markov kernel associated to a “classical” Metropolis-Hastings algorithm, with proposal
kernel Q and target distribution 7, that is for any x € R,

Po(x,dy) = Q(x,dy)au(x,y) + 6(x)dx(dy)

where for any x,y € R,

— in [ F0)40) ) = 1— | O(x.do)oulx
any) =min (FI1) o) =1 [ owadata

In addition to Assumption (A1), we now also assume

‘(AZ) Vx,y € R, q(x,y)>0‘

We now construct a family of random variables (X;),>¢ in the following way.
input :n
output: Xo,...,X,
Att =0, draw Xy ~ u where u is arbitrary

fort < 1tondo
e Draw independently, X/ ~ Py(X,_1,-), Uy ~ Unif(0,1) and ¥; ~ ¢
. . X it U > B(X]
o Letting B : R —]0, 1] be the function § = €/, we set X, = ¢ ' 1 k> BX)
Y, if Up <B(XG)
end

QUESTIONS (CONTINUED)

6. For any bounded measurable function &, write E[A(X;)|X;_1] in terms of Py, and ¢. Deduce that there
exists functions yp and y; such that the Markov kernel P, associated to the Markov chain (Xj)ren can
be written as

Py(x,dy) = Po(x,dy)v0(y) +71(x)0(y)dy
and give the expressions of the functions yy and ;.
Solution.

For any bounded measurable function #,

E[R(X,)[X,1] = B[R 1y, o) Ke1] + B[ Ly, <pexg) Xe1]
A </01 1“>B<")d“> )+ [ A1) (/01 1u<s<xf>du> o(s)h(y)dy
:/Po(x,,],dx’m _B(x'))h(x')+/Po(Xr—l,dx’)B(x’)q)(y)h(y)dy
— [ [P0 + [ mx1.a0)800000)0 A0)

= ‘/‘PZ(thl ,dy)h(y)

where
Pa(x,dy) = Po(x,dy)v0 (y) +n(x)0(0)dy, 10(0) =1-B0), mx)= / Po(x,dx")B(x)

7. Check that P, = PyP;

Solution.



For any (x,A) € R x B(R),
RPi(xA) = [ Pedd) [P L)
= [ Bl [ (1= (@) + B )00)dy] 1a(y)
:./Po(x,dx’)(lf /Poxdx (/q) JdyLa( ))
— [ Rtsadmne) 00 ( o)
— [ [pamo) 11 fe0in] 140) = i

O
8. Show that 7 is invariant for the Markov kernel P,.
Solution.
Since Py and P; are m-invariant, we have nP, = nPyP; = nP; = =, which concludes the proof. O

9. Can we say that 7 is the unique invariant probability distribution for P>?
Solution.

For any (x,A) € R x B(R) such that ¢(A) = [, ¢(x)dx > 0,

%) [ 200y =1 (10(4) >0
where we have used that
T(x) = /Po(x,dx')B(x') >0 since B(X)>0,Y¥ €R

Hence, by Proposition 2.10, P, admits at most one invariant probability measure and combining with the previous ques-
tion, T is the unique invariant probability distribution for P». O

10. (More Difficult) Show that the Law of Large Numbers for (X;),>0 holds starting from any initial
distribution &.
Solution.

Let f : R — R be a measurable function such that 7t(|f|) < . Define
. n—1
A= fime! ¥ 50 =)

Since 7 is the unique invariant probability measure for P», we have by Birkhoff’s ergodic theorem 0 = Pr(A°) =
Jr(dx)h(x) = m(h) where h(x) = Ey[14c] = Py(A°). We now show that h(x) = 0 for all x € R. As seen in Question
5, we have Pyh = h. Then, for all x € R,

) = Pohx) = [ Polod) (10 () +31(3) [ o0

Since 7 > €§, we get €d(h) < m(h) = 0, this implies that ¢(h) = 0. Therefore the second term of the right-hand side
cancels and we get

= [ o) (o) = [ (). 00)h0)dy +6x)000RC)

Therefore, gathering all the terms including 4(x), we obtain

(1 o)) = [ FEEE0) 7010,

W (y)

Since for all y € R, we have nt(y) > 0, we deduce 0 < W, (y) < e and since [n(y)h(y)dy = 0, we get by the monotone
convergence

0< [wROIOId = Jim [ 0RO < Jim M [ F0HG)d =0
‘V.\'(.V)gM .

M—o0 M—)oo
N————
=0



This implies (1 —@(x)yo(x))h(x) =0and since 0 < Yo =1— 8% < land 0 < &< 1we getthat &y < 1. Therefore, for any

x € R, 1—0ax)Yo(x) # 0 and hence A(x) = 0 for any x € R. Finally,
P(4%) = [ &(d0)h(x) =0
~~
=0
which finally proves that for any initial distribution &,
n—1

limn 'Y f(X)=n(f), Pr—as.

n—soo =



