
Problem
Let

• π(dy) = π(y)dy be probability measure on (R,B(R)). As stressed by the expression π(dy) = π(y)dy,
we assume that the measure π has a density on R with respect to the Lebesgue measure and by abuse
of notation, we will also call π this density.

• φ(dy) = φ(y)dy be another probability measure on (R,B(R)). Again, the expression φ(dy) = φ(y)dy
means that we assume that the measure φ has a density on R with respect to the Lebesgue measure
and by abuse of notation, we will also call φ this density.

In all the exercise, we assume that we can draw according to φ and that there exists a constant ε > 0 such
that

(A1) ∀x ∈ R , π(x)> εφ(x)> 0

We now construct a family of random variables (Zt)t⩾0 in the following way.
input : n
output: Z0, . . . ,Zn

At t = 0, draw Z0 ∼ µ where µ is arbitrary
for t← 1 to n do
• Draw independently, Ut ∼ Unif(0,1) and Yt ∼ φ

• Letting β : R→]0,1[ be the function β = εφ/π, we set Zt =

{
Zt−1 if Ut > β(Zt−1)

Yt if Ut ⩽ β(Zt−1)

end

QUESTIONS

1. For any bounded measurable function h : R→ R, write E[h(Zt)|Zt−1]. Deduce the expression of the
Markov kernel P1 associated to the Markov chain (Zk)k∈N.
Solution.

For any bounded measurable function h : R→ R, we have

E[h(Zt)|Zt−1] = E[h(Zt−1)1Uk>β(Zk−1)
|Zt−1]+E[h(Yt)1Uk⩽β(Zk−1)

|Zt−1]

= h(Zt−1)(1−β(Zk−1))+β(Zk−1)
∫

φ(y)h(y)dy

=
∫ [

(1−β(Zk−1))δZk−1 (dy)+β(Zk−1)φ(y)dy
]

h(y)

=
∫

P1(x,dy)h(y)

where
P1(x,dy) = (1−β(x))δx(dy)+β(x)φ(y)dy

2. Show that the Markov kernel P1 is π-reversible.
Solution.

For any measurable function h : R2→ R,∫
π(dx)P1(x,dy)h(x,y) =

∫
π(dx) [(1−β(x))δx(dy)+β(x)φ(y)dy]h(x,y)

=
∫

π(dx)(1−β(x))h(x,x)+
∫

π(x)
εφ(x)
π(x)

φ(y)h(x,y)dxdy

=
∫

π(dx)(1−β(x))h(x,x)+ ε

∫
φ(x)φ(y)h(x,y)dxdy

1



Similarly, ∫
π(dx)P1(x,dx)h(x,y) =

∫
π(dy)(1−β(y))h(y,y)+ ε

∫
φ(y)φ(x)h(x,y)dxdy

so that π(dx)P1(x,dy) = π(dy)P1(y,dx) and P1 is π-reversible.

3. Show that π is the unique invariant probability measure for P1.
Solution.

For all (x,A) ∈ R×B(R) such that φ(A) =
∫

A φ(x)dx > 0, we have

P1(x,A)⩾ β(x)
∫

A
φ(y)dy = β(x)φ(A)> 0

since β(x) > 0 for any x ∈ R. Applying Proposition 2.10, we deduce that P1 admits at most one invariant probability
measure. Since it is π-reversible, it is also π-invariant. Therefore, π is the unique invariant probability measure for P1.

4. Let h : R→ R be a bounded measurable function such that P1h = h. Then, show that h is constant.
Solution.

For all x ∈ R,

h(x) = P1h(x) = (1−β(x))h(x)+β(x)
∫

φ(y)h(y)dy

which is equivalent to β(x)h(x) = β(x)
∫

φ(y)h(y)dy. Dividing by β(x) (since β(x)> 0), we get that h is constant.

5. Let (Zk)k∈N be a Markov chain with Markov kernel P1. Let f : R→R be a measurable function such
that π(| f |)< ∞. Define

A =

{
lim
n→∞

n−1
n−1

∑
k=0

f (Zk) = π( f )

}
Setting h(x) = Ex[1Ac ] = Px(Ac), we admit that P1h = h (it is actually proved in the Lecture Notes).
Deduce from the previous question that the Law of Large Numbers holds for (Zk)k∈N starting from
any initial distribution, i.e. for any probability measure ξ on (R,B(R)),

lim
n→∞

n−1
n−1

∑
k=0

f (Zk) = π( f ), Pξ−a.s.

Solution.

Since P1 admits a unique invariant probability measure π, the asssociated dynamical system is ergodic and the Birkhoff
theorem then shows that Pπ(A) = 1 or equivalently Pπ(Ac) = 0. Then, 0 =

∫
π(dx)Px(Ac) =

∫
π(dx)h(x). Now, since

P1h = h and h is bounded, the previous question shows that h is constant. Combining with π(h) = 0, we get h(x) = 0 for
all x ∈ R. Hence, for probability measure ξ on (R,B(R)),

Pξ(A
c) =

∫
ξ(dx)h(x) = 0

which is equivalent to Pξ(A) = 1 and the proof is completed.
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We now let

• Q(x,dy) = q(x,y)dy be a Markov kernel on R×B(R). Thus, we assume that Q admits the Markov
kernel density q with respect to the Lebesgue measure.

• P0 be the Markov kernel associated to a “classical” Metropolis-Hastings algorithm, with proposal
kernel Q and target distribution π, that is for any x ∈ R,

P0(x,dy) = Q(x,dy)α(x,y)+ ᾱ(x)δx(dy)

where for any x,y ∈ R,

α(x,y) = min
(

π(y)q(y,x)
π(x)q(x,y)

,1
)
, ᾱ(x) = 1−

∫
Q(x,dz)α(x,z)

In addition to Assumption (A1), we now also assume

(A2) ∀x,y ∈ R , q(x,y)> 0

We now construct a family of random variables (Xt)t⩾0 in the following way.
input : n
output: X0, . . . ,Xn

At t = 0, draw X0 ∼ µ where µ is arbitrary
for t← 1 to n do
• Draw independently, X ′t ∼ P0(Xt−1, ·), Ut ∼ Unif(0,1) and Yt ∼ φ

• Letting β : R→]0,1[ be the function β = εφ/π, we set Xt =

{
X ′t if Uk > β(X ′k)
Yt if Uk ⩽ β(X ′k)

end

QUESTIONS (CONTINUED)

6. For any bounded measurable function h, write E[h(Xt)|Xt−1] in terms of P0,β and φ. Deduce that there
exists functions γ0 and γ1 such that the Markov kernel P2 associated to the Markov chain (Xk)k∈N can
be written as

P2(x,dy) = P0(x,dy)γ0(y)+ γ1(x)φ(y)dy

and give the expressions of the functions γ0 and γ1.
Solution.

For any bounded measurable function h,

E[h(Xt)|Xt−1] = E[h(X ′t )1Uk>β(X ′k)
|Xt−1]+E[h(Yt)1Uk⩽β(X ′k)

|Xt−1]

=
∫

P0(Xt−1,dx′)
(∫ 1

0
1u>β(x′)du

)
h(x′)+

∫
P0(Xt−1,dx′)

(∫ 1

0
1u⩽β(x′)du

)
φ(y)h(y)dy

=
∫

P0(Xt−1,dx′)(1−β(x′))h(x′)+
∫

P0(Xt−1,dx′)β(x′)φ(y)h(y)dy

=
∫ [

P0(Xt−1,dy)(1−β(y))+
∫

P0(Xt−1,dx′)β(x′)φ(y)dy
]

h(y)

=
∫

P2(Xt−1,dy)h(y)

where
P2(x,dy) = P0(x,dy)γ0(y)+ γ1(x)φ(y)dy, γ0(y) = 1−β(y) , γ1(x) =

∫
P0(x,dx′)β(x′)

7. Check that P2 = P0P1

Solution.
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For any (x,A) ∈ R×B(R),

P0P1(x,A) =
∫

P0(x,dx′)
∫

P1(x′,dy)1A(y)

=
∫

P0(x,dx′)
∫ [

(1−β(x′))δx′ (dy)+β(x′)φ(y)dy
]

1A(y)

=
∫

P0(x,dx′)(1−β(x′))1A(x′)+
∫

P0(x,dx′)β(x′)
(∫

φ(y)dy1A(y)
)

=
∫

P0(x,dx′)γ0(x′)1A(x′)+ γ1(x)
(∫

φ(y)dy1A(y)
)

=
∫ [

P0(x,dy)γ0(y)+ γ1(x)
∫

φ(y)dy
]

1A(y) = P2(x,A)

8. Show that π is invariant for the Markov kernel P2.
Solution.

Since P0 and P1 are π-invariant, we have πP2 = πP0P1 = πP1 = π, which concludes the proof.

9. Can we say that π is the unique invariant probability distribution for P2?
Solution.

For any (x,A) ∈ R×B(R) such that φ(A) =
∫

A φ(x)dx > 0,

P2(x,A)⩾ γ1(x)
∫

A
γ2(y)dy = γ1(x)φ(A)> 0

where we have used that
γ1(x) =

∫
P0(x,dx′)β(x′)> 0 since β(x′)> 0,∀x′ ∈ R

Hence, by Proposition 2.10, P2 admits at most one invariant probability measure and combining with the previous ques-
tion, π is the unique invariant probability distribution for P2.

10. (More Difficult) Show that the Law of Large Numbers for (Xt)t⩾0 holds starting from any initial
distribution ξ.
Solution.

Let f : R→ R be a measurable function such that π(| f |)< ∞. Define

A =

{
lim
n→∞

n−1
n−1

∑
k=0

f (Xk) = π( f )

}
Since π is the unique invariant probability measure for P2, we have by Birkhoff’s ergodic theorem 0 = Pπ(Ac) =∫

π(dx)h(x) = π(h) where h(x) = Ex[1Ac ] = Px(Ac). We now show that h(x) = 0 for all x ∈ R. As seen in Question
5, we have P2h = h. Then, for all x ∈ R,

h(x) = P2h(x) =
∫

P0(x,dx′)
(
γ0(x′)h(x′)

)
+ γ1(x)

∫
φ(y)h(y)dy

Since π ⩾ εφ, we get εφ(h) ⩽ π(h) = 0, this implies that φ(h) = 0. Therefore the second term of the right-hand side
cancels and we get

h(x) =
∫

P0(x,dx′)
(
γ0(x′)h(x′)

)
=

∫
q(x,y)α(x,y)γ0(y)h(y)dy+ ᾱ(x)γ0(x)h(x)

Therefore, gathering all the terms including h(x), we obtain

(1− ᾱ(x)γ0(x))h(x) =
∫ q(x,y)α(x,y)γ0(y)

π(y)︸ ︷︷ ︸
ψx(y)

π(y)h(y)dy

Since for all y ∈ R, we have π(y) > 0, we deduce 0 ⩽ ψx(y) < ∞ and since
∫

π(y)h(y)dy = 0, we get by the monotone
convergence

0 ⩽
∫

ψx(y)π(y)h(y)dy = lim
M→∞

∫
ψx(y)⩽M

ψx(y)π(y)h(y)dy ⩽ lim
M→∞

M
∫

π(y)h(y)dy︸ ︷︷ ︸
=0

= 0
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This implies (1− ᾱ(x)γ0(x))h(x) = 0 and since 0 ⩽ γ0 = 1−ε
φ

π
< 1 and 0 ⩽ ᾱ ⩽ 1 we get that ᾱγ < 1. Therefore, for any

x ∈ R, 1− ᾱ(x)γ0(x) ̸= 0 and hence h(x) = 0 for any x ∈ R. Finally,

Pξ(A
c) =

∫
ξ(dx)h(x)︸︷︷︸

=0

= 0

which finally proves that for any initial distribution ξ,

lim
n→∞

n−1
n−1

∑
k=0

f (Xk) = π( f ) , Pξ−a.s.
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