Simple Linear Regression: exercises

Exercice 1 (Estimation) By minimising

$$S(\beta_1, \beta_2) = \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2.$$

Find the expression of $\hat{\beta}_1$ and $\hat{\beta}_2$.

Calculate the derivatives according to β_1 and β_2 , we get

$$\begin{cases} \frac{\partial S(\hat{\beta}_1, \hat{\beta}_2)}{\partial \beta_1} &= -2\sum_{i=1}^n (y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i) = 0, \\ \frac{\partial S(\hat{\beta}_1, \hat{\beta}_2)}{\partial \beta_2} &= -2\sum_{i=1}^n x_i (y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i) = 0. \end{cases}$$

The first equation yields

$$\hat{\beta}_1 n + \hat{\beta}_2 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

and we have the estimator for the intercept

$$\hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x},\tag{1}$$

where $\bar{x} = \sum_{i=1}^{n} x_i/n$. The second equation yields

$$\hat{\beta}_1 \sum_{i=1}^n x_i + \hat{\beta}_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i.$$

Replacing $\hat{\beta}_1$ by its expression (1) we can rewrite it as

$$\hat{\beta}_2 = \frac{\sum x_i y_i - \sum x_i \bar{y}}{\sum x_i^2 - \sum x_i \bar{x}},$$

Making use of the fact that the sum $\sum (x_i - \bar{x})$ is zero, we can rewrite the expression for the gradient of the straight line as

$$\hat{\beta}_2 = \frac{\sum x_i (y_i - \bar{y})}{\sum x_i (x_i - \bar{x})} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})(x_i - \bar{x})} = \frac{\sum (x_i - \bar{x})y_i}{\sum (x_i - \bar{x})^2}.$$
 (2)

To obtain this result, we assume that there are at least two points with different x axis coordinates.

Exercice 2 (Bias) Considering the model

$$Y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

and under the assumption $\mathcal{H}_2: \mathbb{E}(\varepsilon_i) = 0$, for $i = 1, \dots, n$ and $Cov(\varepsilon_i, \varepsilon_j) = \delta_{ij}\sigma^2$, evaluate the bias of $\hat{\beta}_2$ and $\hat{\beta}_1$.

Replace y_i by $\beta_1 + \beta_2 x_i + \varepsilon_i$ and get

$$\hat{\beta}_{2} = \frac{\sum (x_{i} - \bar{x})y_{i}}{\sum (x_{i} - \bar{x})^{2}} = \frac{\beta_{1} \sum (x_{i} - \bar{x}) + \beta_{2} \sum x_{i}(x_{i} - \bar{x}) + \sum (x_{i} - \bar{x})\varepsilon_{i}}{\sum (x_{i} - \bar{x})^{2}}$$

$$= \beta_{2} + \frac{\sum (x_{i} - \bar{x})\varepsilon_{i}}{\sum (x_{i} - \bar{x})^{2}}.$$

The last term is 0 by construction.

Now $\mathbb{E}(\hat{\beta}_1) = \mathbb{E}(\bar{y}) - \bar{x}\mathbb{E}(\hat{\beta}_2) = \beta_1 + \bar{x}\beta_2 - \bar{x}\beta_2 = \beta_1.$

Exercice 3 (Variance) Considering the model

$$Y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

and under the assumption $\mathcal{H}_2: \mathbb{E}(\varepsilon_i) = 0$, for $i = 1, \dots, n$ and $Cov(\varepsilon_i, \varepsilon_j) = \delta_{ij}\sigma^2$, evaluate the variance of $\hat{\beta}_2$ and $\hat{\beta}_1$.

Start with $V(\hat{\beta}_2)$ since the only random variable is ε we have

$$V(\hat{\beta}_{2}) = V\left(\beta_{2} + \frac{\sum(x_{i} - \bar{x})\varepsilon_{i}}{\sum(x_{i} - \bar{x})^{2}}\right)$$

$$= V\left(\frac{\sum(x_{i} - \bar{x})\varepsilon_{i}}{\sum(x_{i} - \bar{x})^{2}}\right) = \frac{V\left(\sum(x_{i} - \bar{x})\varepsilon_{i}\right)}{\left[\sum(x_{i} - \bar{x})^{2}\right]^{2}}$$

$$= \frac{\sum_{i,j}(x_{i} - \bar{x})(x_{j} - \bar{x})\operatorname{Cov}(\varepsilon_{i}, \varepsilon_{j})}{\left[\sum(x_{i} - \bar{x})^{2}\right]^{2}}.$$

Since $Cov(\varepsilon_i, \varepsilon_j) = \delta_{ij}\sigma^2$ we have

$$V(\hat{\beta}_2) = \frac{\sum_i (x_i - \bar{x})^2 \sigma^2}{\left[\sum_i (x_i - \bar{x})^2\right]^2} = \frac{\sigma^2}{\sum_i (x_i - \bar{x})^2}$$

Now

$$V(\hat{\beta}_1) = V(\bar{y} - \hat{\beta}_2 \bar{x}) = V(\bar{y}) + V(\bar{x}\hat{\beta}_2) - 2\operatorname{Cov}(\bar{y}, \hat{\beta}_2 \bar{x})$$

$$= V(\frac{\sum y_i}{n}) + \bar{x}^2 \frac{\sigma^2}{\sum (x_i - \bar{x})^2} - 2\bar{x}\operatorname{Cov}(\bar{y}, \hat{\beta}_2)$$

$$= \frac{\sigma^2}{n} + \bar{x}^2 \frac{\sigma^2}{\sum (x_i - \bar{x})^2} - 2\bar{x}\sum_i \operatorname{Cov}(\bar{y}, \hat{\beta}_2).$$

Since

$$Cov(\bar{y}, \hat{\beta}_{2}) = \frac{1}{n} Cov \left(\sum_{i} (\beta_{1} + \beta_{2}x_{i} + \varepsilon_{i}), \frac{\sum_{j} (x_{j} - \bar{x})\varepsilon_{j}}{\sum_{j} (x_{j} - \bar{x})^{2}} \right)$$

$$= \frac{1}{n} \sum_{i} Cov \left(\varepsilon_{i}, \frac{\sum_{j} (x_{j} - \bar{x})\varepsilon_{j}}{\sum_{j} (x_{j} - \bar{x})^{2}} \right)$$

$$= \frac{1}{\sum_{j} (x_{j} - \bar{x})^{2}} \sum_{i} \frac{1}{n} Cov \left(\varepsilon_{i}, \sum_{j} (x_{j} - \bar{x})\varepsilon_{j} \right)$$

$$= \frac{\sigma^{2} \frac{1}{n} \sum_{i} (x_{i} - \bar{x})}{\sum_{j} (x_{j} - \bar{x})^{2}} = 0.$$

We get

$$V(\hat{\beta}_1) = \frac{\sigma^2}{n} + \bar{x}^2 \frac{\sigma^2}{\sum (x_i - \bar{x})^2} = \frac{\sigma^2 \sum x_i^2}{n \sum (x_i - \bar{x})^2}.$$

Exercice 4 (Covariance) Considering the model

$$Y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

and under the assumption \mathcal{H}_2 : $\mathbb{E}(\varepsilon_i) = 0$, for $i = 1, \dots, n$ and $Cov(\varepsilon_i, \varepsilon_j) = \delta_{ij}\sigma^2$, evaluate the covariance of $\hat{\beta}_2$ and $\hat{\beta}_1$.

We have

$$\operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2) = \operatorname{Cov}(\bar{y} - \hat{\beta}_2 \bar{x}, \hat{\beta}_2) = \operatorname{Cov}(\bar{y}, \hat{\beta}_2) - \bar{x} \operatorname{V}(\hat{\beta}_2) = -\frac{\sigma^2 \bar{x}}{\sum (x_i - \bar{x})^2}.$$

Exercice 5 (Sum of residuals) Show that in a simple linear regression model the sum of the residuals is zero.

Just write

$$\sum_{i} \hat{\varepsilon}_{i} = \sum_{i} (y_{i} - \bar{y} + \hat{\beta}_{2}\bar{x} - \hat{\beta}_{2}x_{i}) = \sum_{i} (y_{i} - \bar{y}) - \hat{\beta}_{2} \sum_{i} (x_{i} - \bar{x}) = 0.$$