7d Conditional distributions and
kernels

7.1 Conditional expectation and distribution
If not specified, in all this section, we consider a probability space (2, F,P) and two
measurable spaces (X,X) and (Y,)). Similarly, any random variables are defined on
Q,F,P).

We start by a few reminders on the conditional expectations (see [Pol02, Chapter 5]):

Theorem 7.1. Let p =1 and G c F be a sub-o-field and Z be a random variable on Q.
Then, there exists a unique W € LP(Q,G,P) such that for any representative, still denoted by
W, G/B(R)-measurable for any A€ G, E[1poZ]=E[1AW].

In addition, it satisfies E[|W|P]1 < E[|Z|7].

Remark 7.1. We can in fact also define the conditional expectations of random variable Z
which are supposed to be only non-negative almost surely.

7.1.1 A bit of history: conditional distribution in the sense of Kolmogorov
This section is inspired by the very instructive survey [CP97]. Here we consider a random
variable X valued in the measurable space (X, X).

From the conditional expectation, we can define an application:
AeX —K(A),
where K(A) is a version of E[1(X)|G]. This leads to an application:
QxX —1[0,1] (7.1)

(w,A)— K(w,A).
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Definition 7.1. We call conditional distribution of X given G in the sense of Kolmogorov
any application of the form (7.1) and satisfies for any A € X', P-almost surely,

Ka =E[1aX)IG].

From this definition and since we know that conditional distributions in the sense of
Kolmogorov exist, we aim to define a “random” distribution in the sense that P-almost
surely, A — K(w,A) is a probability measure and for any A e X,

w~—K(w,A),

is measurable from Q in the space of probability measure on (X,X) endowed with the
weak topology. The rationale behind the introduction of such ideas is to be able to write
conditional expectation as expectation with respect to this random measure: i.e., for any
measurable function f : X — Ry,

ELF(X)IG1(w) = f F@K(0,dx). (7.2)

However to be able to write (7.2), we have to verify:

(a) P-almost surely, A— K(w,A) is a probability measure;

(b) w— K(w,A) is F/B(R)-measurable for any A€ X.

While (b) is easily verified, (a) is in general false. Indeed, we have to verify that

P-almost surely for any sequence of disjoint measurable subsets (A;)e; , | ©NG7.3)
K(w,UnAp) =) K(w,A,).
nel
Yet the definition of a conditional distribution in the sense of Kolmogorov only ensures
that general false. Indeed, we only can conclude that

for any sequence of disjoint measurable subsets (A, )1, | €N, P-almost surely (7.4)
K((U, UnAn) = ZK((U: An) .
nel
Note the subtle difference between (7.3) and (7.4). In fact, if the set of disjoint mea-
surable subsets of X is countable'”, then the equivalence holds but in general we cannot
conclude that (7.4) implies (7.3). Therefore, we need to impose some additional conditions
on conditional distribution in the sense of Kolmogorov for (7.2) to holds. This leads to the
concept of regular conditional distribution.

Mswhich is the case if for example X is finite
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7.1.2 Regular conditional distribution

Regular conditional distribution with respect to a sub-o-field

Definition 7.2. Let G c F be a sub-o-field and X be random variable valued in (X, X) A
conditional distribution K (in the sense of Kolmogorov) of X given G is said to be regular if

(a) w— K(w,A) is F/B(R)-measurable for any A€ X.

(b) A— K(w,A) is a probability measure on (X, X) for any w.

Remark 7.2. Note that we can be a bit general in the definition just requiring the second
condition P-almost surely. But in that case, a modification of the conditional distribution
on the set of null probability where it is untrue gives a conditional distribution satisfying
(b) for any w.

For regular conditional distribution, we drop the terminology “in the sense of Kol-
mogorov”. We first show that equipped with a regular conditional distribution, (7.2) holds.

Theorem 7.2. Let X be a random variable on (Q, F,P) with values in (X,X). Let G< F
be a g-algebra and let K be a regular conditional distribution of X given G. Further, let
f :E — R be measurable and E[|f(X)|]l < oo or f non-negative. Then

E[f(X) | Glw) = ff(x)K(w,dx) for P-almost all w . (7.5)

Proof. That w— [ f(x)K(w,dx) is measurable is a consequence of Proposition 7.12 below.
It remains to show that the right-hand side in (7.5) has the properties of the conditional
expectation Theorem 7.1.
It is enough to consider the case f = 0. Let (g,),en be a sequence of non-decreasing
simple functions that converges pointwise to f:

n
gn::Zai]lAi,AieX,aieRJr.
i=1
Now, for any n e N and Be G,

Elg.(X)1g]l=) a;P[X€A;}nB]=) aifBP[{X € A} GIP(dw)
i=1 i=1

iéaifBK(w,Ai)[P’(dw):/Bi:ilaiK(w,Ai)P(dw):fB(fgn(x)K(w,dx))IP(dw)

=El¢,1g], ¢plw)= fgn(x)K(w,dx) .
(7.6)
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By the monotone convergence theorem, for almost all w (in fact all), ¢,(w) converges
to [ f(x)K(w,dx) since g, converges to f and is non-decreasing. In addition for any w,
¢n(w) < ¢pp+1(w). Applying the monotone convergence theorem once more regarding the
left-hand side of (7.6) and with respect to the sequence (¢, )nen, We get

E[f(X)1g]= lim Elg,(X)Igl= lim E[p,lg]= fB f FK (0,d0)P (dw) .

A first introduction to kernels
The definition of a regular conditional distribution motivates the following concept.

Definition 7.3. Let (Y,))) and (X, X’) be two measurable spaces. We say that K : Y x X — R,
is a kernel if

(a) y— K(y,A)is V/B(R)-measurable for any Ae X.
(b) A— K(y,A) is a o-finite measure on (X, X) for any ye Y.

We say that K is finite if K(y,X) < oo for any y € Y. We say that K is stochastic (resp. sub-
stochastic) kernel if K(y,X) =1 (resp. K(y,X)<1) for any y e Y. If Y = X, a (sub)stochastic
kernel is said to be a (sub)Markov kernel.

Remark 7.3. From Definition 7.3, an equivalent formulation of Definition 7.2 is that there
exists a stochastic kernel K on Q x X which is a conditional distribution of X given G, i.e.,
such that for any A € X', P-almost surely:

E[TAX)IG(w) = K(w,A).

Example 7.1 (Identity kernel). The map (y,A) € X x X' — 6,(A) = 1a(y) is a Markov kernel
on (X, X). It will denoted by Id for simplicity and referred to as the Identity kernel. This
notation will be justified in Remark 7.7.

Example 7.2 (Stochastic matrices and discrete kernels). Stochastic matrices (y,x) —
M(y,x) on a countable space D, i.e., function on D? — [0,1] satisfying YyepM(y,x) =1
naturally defines a Markov kernel by

M(y,A)= Y M(y,x), AcD.
x€EA

Conversely, a Markov kernel M on D is said to be discrete and defined a stochastic

matrix:
M(y,x) = M(y, {x}).

In fact the former example can be encompassed in the following result:

72



Conditional distributions and kernels Chapter 7

Proposition 7.3. Let (x,y) — k(x,y) be a non-negative measurable function on (XxY,X®))
endowed with a o-finite measure Ax ® Ay ?. In addition, suppose that there exists a sequence
(Apnen € XN, such that for any n eN,

f Ia,@k(y,x)dAx(x) < +oo, for any neN. (7.7)
Then, forany yeY, Ae X,

K(y,A) = f Ta()k(y,x)dAx(x),

defines a kernel. on 'Y x X.
In addition, if for any y €Y,

f k(y,0dAx() = 1,

we say that k is a conditional density associated with the kernel K. Then K is a stochastic
kernel and if Y =X, K is a Markov kernel.

Proof. For any A, y — K(y,A) is well-defined and measurable by Fubini theorems Theo-
rem 6.5. In addition, for any y e Y, A— K(y,A) is a o-finite measure by the condition (7.7)
and an easy application of the monotone convergence theorem. O

In our next result, we show that the condition (a) can only verified on a 7-system.

Theorem 7.4. Let (Y,)) and (X, X) be two measurable spaces. Suppose that X = o(C). The
map K:Y x X — R, is a kernel if and only if (b) in 7.3 holds and for any A€C, y — K(y,A)
is Y-measurable.

Proof. The set

A={AeX :y—K(y,A)},

is A-system Definition 2.7 (details are left to the reader). Since it contains C, it also contains
X and the proof is completed. O

Regular conditional distribution with respect to a random variable

We consider now the particular case where G = 6(Y') where Y is random variable valued in
(Y,))). We could apply and consider the same concepts as previously to be able to write for
any measurable function f : X — R,

ELF(X)|Y (@) = f F@K(,dx), (7.8)

@ Note that Ay is a bit artificial here and could be Ay = 8y, for yoeY
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for some stochastic kernel K on Q x &'.
However, from a result from measure theory Theorem 7.7, it holds that for any non-
negative real random variable Z:

ElZIY]=¢(Y),

for some measurable function ¢ :Y :R. Consequently, in defining a conditional distribution
X with respect to a random variable Y, we would like to have a map @ : Y x X — R, so that
we may write for any non-negative Borel function:

Elf(X) 1Y Nw) = f f(x)Q(Y (w),dx) for P-almost all w . (7.9)

Note the difference between (7.8) and (7.9) is that the kernel K and @ are defines on Q2 x X’
and Y x X respectively.
This then motivates the following definition.

Definition 7.4. Let X,Y be two random variables on (Q2, F,P) with values in (X, X’) and
(Y,)) respectively. We say that @ : Y x X — R, is a regular conditional distribution of X
given Y if it is a stochastic kernel and if for any A € X', P-almost surely

E[1TAX)IY I(w) = QY (w),A).
We first verify that (7.9) holds.

Theorem 7.5. Let X,Y be two random variables on (Q,F,P) with values in (X,X) and
(Y,)) respectively. Let @ be a regular conditional distribution of X given Y. Further, let
f : X =R be measurable and E[|f(X)|] <oco. Then

E[f(X)|Y lw) =ff(x)Q(Y(w),dx) for P-almost all w .

Proof. The proof follows the same line as Theorem 7.2 and is omitted. O

We specify the relation between the regular conditional distribution given Y and the
regular conditional distribution given o(Y), in particular their existence. Note that the
existence of a regular conditional distribution given Y easily implies the existence of a
conditional distribution given g(Y'). The following result gives the converse.

Theorem 7.6. Let X,Y be two random variables on (Q,F,P) with values in (X,X) and
(Y,)) respectively. Suppose that there exists a regular conditional distribution given o(Y)
then there exists a a regular conditional distribution given Y.

The proof relies on the following important result from measure theory.
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Theorem 7.7. Let (X,X) and (Y,)) be two measurable spaces and f : X — Y. Then,
h: X — Ris o(f)/B(R)-measurable if and only there exists a measurable function ¢:Y — R,
Y/B(R)-measurable such that

h=@of.

Proof. Denote by K the regular conditional distribution given o(Y) which is supposed to
exist. Then, for any A € X, there exists ha by Theorem 7.7 such that for any w € Q,

K(w,A)=hpoY(w),
since w — K(w,A) is by construction (Y )-measurable. Then, defining

Q(y,A)=haly),

is almost the object we are looking for. In the sense that A — ha(y) is a measure only
for y € Y(Q) and therefore for Py-almost every y. Denote by B € ) the set of y such that
A — ha(y)is not a measure. Then, Y(Q) c BC and P(Y ¢ B) = 0. We then define

Q(y,A) =

Q(y,A) ify¢B
dx,(A)  otherwise.

Then, it is straightforward to see that @ is a regular conditional distribution of X given
Y. O

Existence of regular conditional distribution

Theorem 7.8 (Regular conditional distributions in R). Let X be a real random variable on
the probability space (Q, F,P) and let G c F be a sub-o-field. Then, there exists a regular
conditional distribution K of X given G.

Example 7.3. Let Z{,Z5 be independent Poisson random variables with parameters
A1,A2 =0. One can show (exercise!) that (withY =Z; and X =Z1+Zy)

PlZ1=k|Z1+Za=nl=byp(k) for k=0,...,n,

where p = /11/11&2'

Definition 7.5. « Two measurable spaces (E,£) and (E’,£’) are called isomorphic if there
exists a bijective map ¢ : E — E such that ¢ is £ — £'-measurable and the inverse map ¢!
is £’ — E-measurable. Then we say that ¢ is an isomorphism of measurable spaces.

o Ifin addition u and y' are measures on (E,&) and (E',€’) and if 4’ = po ™1, then ¢ is an
isomorphism of measure spaces, and the measure spaces (E,&, u) and (E' ! ) are called
isomorphic.
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Definition 7.6. A measurable space (E,£) is called a Borel space if there exists a Borel set
B € B(R) such that (E,£) and (B, B(B)) are isomorphic.

Borel spaces are precisely the ones for which we can construct regular conditional
distributions.

Theorem 7.9. Let G c F be a sub- o-algebra . Let X be a random variable with values in a
Borel space (E,&) (hence, for example, E Polish, E = IRd, E=RN,E=C(0,1)), etc.). Then there
exists a regular conditional distribution K of X given G.

Proof. Let Be B(R) and let ¢ : E — B be an isomorphism of measurable spaces. By Theo-
rem 7.8, we obtain the regular conditional distribution xy’ g of the real random variable
Y’ =¢@oY. Now define xy g(w,A) = xy' g(w,p(A)) for AcE. O

Among Borel spaces are Polish spaces. Recall that a complete separable metric space
is called a Polish space. In particular, R, 724 RN (C([0,1]), ] - lloo) and so forth are Polish.
Closed subsets of Polish spaces are again Polish. Without proof, we present the following
topological result (see, e.g., [RS94]).

Theorem 7.10 (Kuratowski theorem). Let E be a Polish space with Borel o-algebra E.
Then (E,E) is a Borel space. More precisely, it is isomorphic to either R, Z or a finite set.

7.1.3 Computation of conditional distribution/kernels in practice

To compute the conditional distribution of X given either a o-field G or another random
variable Y, the first road with there is no explicit densities involved to get back to the
definition Definition 7.2 and Definition 7.4.

However, if (X,Y) has some density with respect to some reference measure, the follow-
ing result make the connection between conditional densities and conditional distribution
clear.

First recall the definition of conditional densities:

Definition 7.7 (Conditional density). Let (X,Y) be two random elements admitting a
density f with respect to Ax ® ly on (XxY,X ®))). Then the function (x,y) — f(y|x) defined
for any (x,y) € XxY by

[ e, »)dAy(y), if [ f(x',y)dAx(x") =0 or = +00

fxiy(y,x) = _
fle,y)/ [ f',y)dAx(x") otherwise,

is called the conditional density of X given Y.

Observe that the denominator is the density of Y with respect to Ay applied to y.
Hence, it satisfies

0 <ff(x’,y)d/lX(x’) <oo for PY-almost every y .
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For x’s such that this is not true, we simply set fx|y(y,x) the marginal density of X, but
we could have set x — fx|y(y,x) to be any other arbitrary density.

In the case where (X,Y) satisfies the assumptions of Definition 7.7, the conditional
distribution of Y given X is given by the following result, whose proof is left as an exercise.

Theorem 7.11. Let (X,Y) be two random elements admitting a density f : X xY — R, with
respect to Ax ® Ay on (XxY,X ®)). Then a regular conditional distribution of X given Y is
given by

Q(y,A)=fAfX|Y(y,x)/lX(dx) forany yeY and A€,

where (x,y) — fxy(y,x) is the conditional density of X given Y.

7.1.4 Operation with transition/stochastic kernels
We have shown in Theorem 7.5 that given a regular conditional distribution  of X given
Y, we can characterize conditional expectations of random variables f(X) given Y as

HﬂXMﬂ=fﬂmmYdm.

However in the proof of this result, we have overlooked the existence and construction of
the right-hand side, in particular the measurability of y — [ f(x)@(Y,dx). In this section,
we will deal with this problem.

Proposition 7.12. Let K be a finite transition kernel from (Y,Y) to (X,X)and let f : Y xX —
[0,00] be measurable with respect to ) ® X/B([0,00]). Then the map

Kf:Y —[0,00],
w~fﬂm@K@ﬂm

is well-defined and Y-measurable.

Proof. First note that for a fixed y, x — f(y,x) is measurable with respect to X by The-
orem 6.2. Therefore, Kf(y) = [ f,(x)K(y,dx) is well-defined. Hence, it remains to show
measurability of this function. To this end, we first consider the case f = 1 using the
7-A theorem Theorem 2.10. We will then conclude using a sequence of simple functions
converging pointwise to f.

If g =1a,xA, for some Aj €Y and Ag € X, then Kg(y) = 1,(y)K(y,A2) is measurable.
Now let

D={AeY®X:K1p is Y-measurable }.

We show that D is a A-system: (i) Evidently, Y x X € D. (ii) If A,B € D with A c B, then
Klg\a =K1g—K1p, is measurable, where we used the fact that K is finite; hence B\A € D.

77



Chapter 7 Conditional distributions and kernels

(iii) If Ay,Ag,... € D are pairwise disjoint and A :=>7; Ay, then K1a = 377 K1p, is
measurable; hence A€ D.

Summarizing, D is a A-system that contains the m-system {A; x Ag : A; € ), Ag € X}
that generates )V ® X'. Hence, by the n-1 theorem Theorem 2.10, D = Y ® X. This complete
the proof for f = 1. Taking a sequence of non-decreasing simple functions {f, : n €N}
converging to an arbitrary f pointwise and using the monotone convergence theorem, we
get Kf =lim,_. .o Kf,. Then Kf is measurable as a limit of measurable functions. O

In addition, we aim to explore the use of conditional distribution to characterize now
the distribution of (X,Y’) and extend this result to more than two random variables. More
precisely, the distribution of a pair (X,Y’) characterize their regular conditional distribution.
Indeed, it is not hard to see that if @1,Q2 are two regular conditional distribution of X
given Y, then for any A€ ), Be X, it holds E[TA(Y XQ1(Y,B)—Q2(Y,B))] = 0 which implies
that for any B € X, for Py-almost every y, @1(Y,B) = @2(Y,B). Now we would like to
the other way around, i.e., defining the joint distribution of (X,Y) from a conditional
distribution, i.e., the data of a kernel.

Let X,Y,Z three random variables. We start by a result that characterizes the condi-
tional distribution of a pair (X,Y) given Z from the conditional distribution of Y given Z
and the one of X given (Z,Y). To this end, we need the definition of the tensor product of
kernels.

Proposition 7.13. Let K; be a finite transition kernel Zx ) and let K9 be a finite transition
kernel from ZxY x X. Then the map

Ki®Ko:Zx(YVoX)—R,,

@A~ | K1 dy) [ Ka(@,3),d01a (00
is well-defined and is a (o-finite but not necessarily a finite) transition kernel on Z x () x X).

If K1 and Ky are stochastic, then K1 ® Ko is stochastic. We call K1 ® Kg the tensor product
of K1 and Ko.

Remark 7.4. In the following, we often write [ K (y,dx)f (y,x) instead of [ f (y,x)K (i,dx)
since for multiple integrals this notation allows us to write the integrator closer to the
corresponding integral sign.

If K5 is a kernel from (Y,)) to (X, X'), then we define the product K; ® K9 similarly by
formally understanding Ko as a kernel from (z x Y, Fy ® )) to (X, X) that does not depend
on the z-coordinate.

Proof. Let Ae Y ®X. By Proposition 7.12, the map
gn: @)= [ Ka5.9),d01a0,9)

78



Conditional distributions and kernels Chapter 7

is well-defined and F( ® Y-measurable. Thus, again by Proposition 7.12, the map
z2—K1®Ks(z,A)= le (z,dy)ga(z,y)

is well-defined and JFy-measurable. For fixed z, by the monotone convergence theorem, the
map A— K1 ®Ky(z,A) is g-additive and thus a measure.

Forzezand neN, let A, , :={yeY:Kz((z,y),X)<n}. Since K3 is finite, we have
Un=1A;, =Y for any z € z. Furthermore, K1 ® K (2, A, xX)<n-K;(2,A,) < oco. Hence
K1®K5(z,-)is o-finite and is thus a transition kernel. The supplement is trivial. O

Definition 7.8. Let K be a Markov kernel on X x X, we define by induction on n = 1, the
Markov Kernel on X ® X'®" by P®"*1 = P®" g P, with P®1 = P.

Definition 7.9. Let n € N and {(X;, Xi)}?zo, be measurable spaces.

(1) Fori=1,...,n, let K; be a stochastic kernel from (]'[Z_:l0 Xk,®2‘:%)/l’k) to (X;,X;). Then
the recursion K1 ®...9K; := (K1 ®...9K;_1)®K; for any i = 1,...,n defines a stochastic
kernel ®2:1Kk =K1®...9K; from (Xo, Xp) to (H;;:lxk,(@z:le).

(2) Iffor i =1,...,n, K; is a stochastic kernel from from ([T ej, Xj, ®jey, X;) to (X, X;) for
J<{0,...,i—1} (in particular we consider in general J = {i — 1}, then we define

Ki((x0,...,2i-1),A) = k((x;)jes;, A)
and set ®2:1Kk = ®2:1Kk.

The following consequence and probability interpretation of Proposition 7.13 is the
following.

Proposition 7.14. Let X,Y ,Z be three random variables valued in (X,X), (Y,)) and
(Z, Z) respectively. Let K1 and Ko be regular distribution of Y given Z and X given (Y ,Z)
respectively. Then a regular conditional distribution of (Y ,X) given Z is K1 ® K.

Proof. 1t is left as an exercise. O

Corollary 7.15. Let (Y,)),(X,X) be measurable spaces and pu a finite measure on (Y,))).
Let K be a finite transition kernel from Y to X. Then there exists a unique o-finite measure
u®K on (Y xX, Yo X)with

LO®K (A1 xAg) = fY Ia,(WK(y,A9)u(dy) forany AieY , AgeX.

If K is stochastic and if p is a probability measure, then u® K is a probability measure.

Proof. 1t is a simple consequence of Proposition 7.13 with Ko = K and K1(z,-) = u for any
z. O
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Definition 7.10. Let (Y,),u) be a finite measure space, let (X, X') be a measurable space
and let K be a finite transition kernel from Y to X. We define the o-finite measure uK for
any Ae X as uK(A)=u® K(Y x A). uK is referred to as the composition of u and K.

Remark 7.5. It is easy to verify that if u is a probability measure and K is a stochastic
kernel, uK is a probability measure.

Proposition 7.16. Let (X,Y) be a pair of random variables valued in (XxY, X ®)). Let K
be a regular conditional distribution of X given Y and let y be the distribution of Y. Then
(X,Y) has distribution u® K and X has distribution uK.

Remark 7.6. It may be proven as an immediate consequence of Proposition 7.14 taking
for Z = ¢ for a fixed constant c.

Proof. The proofis left as an exercise. O

Theorem 7.17. Let Y ,X1,...,X,, be random variables such that Y is valued in (Y,Y) and
X; isvalued in (X, X) for any i € {1,...,n}. Suppose that X1,...,X, given Y arei.i.d., i.e.,

for any measurable and bounded functions f1,...,[n,
EIT, £:(XDIY ] =17, ELfi(XDIY].

Suppose that K is a regular conditional distribution of X1 given Y and denote by u the
distribution of Y.

Then, for any i € {1,...,n}, K is a regular conditional distribution of X; given Y and the
distribution of (Y ,X1,...,Xy)is

Po(Y,X1,...,X») (A = f La(y,x1,...,x)u(dy) ®;_; [K(y,))(dx1---dxy,),
where ®;_,[K(-,-)] is defined according to Definition 7.9 with J; = {0} for any i.

Example 7.4. Let Y be a random variable that is uniformly distributed on [0,1]. Let
X1,...,X, 1.1.d. given Y with conditional distribution given Y, Ber(Y), i.e.,

K(y,A)=y51(A)+(1—-y)5¢p(A), A€{0,1}.
Then, the distribution of (Y,X7,...,X,) is Unif([0,1]) ® K®".

Definition 7.11. Let (X, X), (Y,)) and (Z, Z) be a measurable spaces and let K1,K> be a
(sub)-stochastic kernel on Z x ) and Y x X respectively. The function

K1K2:Z><X—>[R+,
(2,Ag) — K1 Koz, Y x A) = fY Ki1(z,dy)Ka(y,As)
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is well defined and defined a (sub)-stochastic kernel on Z x X referred to as the composition
of K1 and K».

Remark 7.7. Note that for any Markov kernel P on X x X, IdP = PId = P where Id is the
identity kernel defined in Example 7.1: (y,A) € X x X' — 5,(A) = 1a(y).

Proposition 7.18. Let XY ,Z be three random variables valued in (X, X), (Y,)) and (Z,2)
respectively. Suppose K1 and Ko are stochastic kernel such that K1 ® K is the conditional
distribution of (Y ,X) given Z. Then, K1Ks is a regular conditional distribution of X given
Z.

Proposition 7.19. Let K1,K9,K3 be three stochastic kernels on Y x X, Xx W and W x Z
respectively. Then (K1K9)K3 = K1(K2K3).

Proof. This is a simple application of Fubini theorems Theorem 6.5. O

Theorem 7.20 (another Fubini theorem). Let (X, X), (Y,))) be a measurable spaces. Let {1
be a finite measure on (Y,))) and let K be a finite transition kernel from Y to X. Assume
that f Y x X — R is measurable with respect to Y ® X. If f =0 or f e Li(u® K), then

f fdueK) = f { f f(y,x)K(y,dx)}u(dy).
Y xX Y X

Remark 7.8. Note that by Proposition 7.12, Kf : y — [y f(y,x)K(y,dx) is measurable.

Proof. For f = 1a,xa, With Aj €)Y and Ag € X, the statement is true by definition; see
Corollary 7.15.

Then for f =1 with A€ Y ® ), the result follows from an easy application of the 7-1
theorem Theorem 2.10.

The proof is then completes taking decomposing f = f* — f~ and two sequences of
simple functions which monotonically converges to f*,f~ pointwise and applying the
convergence monotone theorem. [

Corollary 7.21. Let (X,X), (Y,)) be a measurable spaces. Let u be a finite measure on
(Y,)) and let K be a finite transition kernel from Y to X. Let f : X =R, f =20 or f e L{(u®K).
Then (uK)X(f) = (K f) denoting for any measure v and v-integrable function f, v(f) = [ fdv.

7.1.5 Applications to Bayesian statistics
Recall that Bayesian statistics suppose a probabilistic model on some observed data zgs
which is assumed to be a sample from a random variable z,,5 valued in a measurable space
(Z, Z). The observation may gather i.i.d. observations, in such case z,s = (21,...,2,) Where
the z; are i.i.d. samples.

A generalization of ?? is the following using the concept of kernel.
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Definition 7.12. A Bayesian statistical model is the data of (Z, 2),(T,7),Pt,v1) where

(1) (Z,2) and (T,7) are measurable spaces;

(2) ‘Pt is a set of probability measure defined by:
Pr={K(9,) | 9€T},

where K is a stochastic kernel on T x Z;

(3) a distribution on vt on (T,7) called the prior distribution.

In most applications, T is either discrete or a subset of R? for d = 1. Assume that
the model is dominated by a measure pu on (Z, Z2), i.e., K admits a transition density with
respect to u: there exists a measurable function L: T x Z — R, such that for any 9€ T and
Zobs €Z,

dK(9,-)
du

(2obs) = LD, Zobs) - (7.10)
The function L : (9,zqps) — L(9, z0hs) is called the likelihood function of the model.

Example 7.5. A basic example is the Gaussian model where Z is a vector of R”, for n =1,
whose components are independent and identically distributed (i.i.d.) according to the
one dimensional Gaussian law with mean 9 € R and some fixed variance ¢2 > 0. Then the
model is dominated by the Lebesgue measure on R” and admits the density defined by for
any zohs = (21,...,2,) ER” and 9 e R

L(0,20bs) = [ | exp (~ llz; = 912 /(2¢%) .
=1

Then while in frequentist statistics, the parameter 9 would be inferred by maximizing
the likelihood function, Bayesian statistics consider that the parameter 9 is itself a sample
from a random variable 6, whose the distribution is vT.

Definition 7.13. The joint distribution of the model is v ® K: for any A€ T ® Z

vT @ K(A) :f 1a(9,20ps)K(9,dx)vT(dI) .
z

X

The marginal distribution vz of X is defined as v1K: for any A € Z by
vz(A) :fT . 149, 20bs)K (9, dx)vr(dD) .

Note that if (7.11) holds true, the joint distribution admits a density with respect to
v1 ® u given by (6,x) — L(0, x).
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In addition, the marginal distribution also admits a density, with respect to y given by
for any zgps € Z

P2 (Zabs) = fT L9, 2o1s)v ().

Bayes theorem [Sch95, Theorem 1.31] which is a simple consequence of Theorem 7.11 gives
an expression of the conditional law of 6 given z.s, called the posterior law, depending on
the likelihood function and the prior distribution v:

Theorem 7.22. The conditional distribution of 0 given z.,s denoted by mg )z admits a
conditional density with respect to vT given for vt ® K-almost all (9,x) by

_ L(9,x)

) — .
(x,9) pron

Definition 7.14. Given a Bayesian model and some observation z.,s, we define the
posterior distribution of 6 as the distribution with density with respect to v,

L(ﬁazobs)

9) = .
p@IZ( ) pZ(Zobs)

7.2 A bit of decision theory

Let (Z,2),(T,T),Pt,vT) be a Bayesian model. Using the posterior distribution of Bayesian
model, the parameter 9 can be inferred as follows. Let (D,D) be a measurable space, called
the decision/action space. For example for a test, the space D = {0, 1} would be chosen. If
the interest is in estimating the parameter 9, D=T.

Definition 7.15. (1) A decision rule 6 is any measurable function from (Z, Z) to (D, D)
and the set of all decision rules is denoted by D.

(2) A loss function is any measurable function .2 : T x D — R,.

(3) The risk function is defined for any decision rule § and 6 € T as

R(B,(S):f3(19,6(2))K(9,dz).
z

(4) The Bayes (or integrated) risk function is defined for any decision rule 6 and prior vt
as

Zp(0) = f R(9,6)v7(d9).
T
Note that this function depends also implicitly on the prior vT.
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Based on this definition, we aim to find a decision rule which minimize § — %g(0).
Decision rules which achieve are called Bayes rules. To this end, we introduce the concept
of posterior risk

Definition 7.16. (1) Then, the posterior risk or partial Bayes risk associated with .Z is
defined for any prior distribution vt on (T,7) and decision a € D by

p(@lzops) = fT L9, a)m02(d]z0s)

where 7g;z(-|z0bs) is the posterior distribution of 6 given z,,s associated with the prior
distribution vt.

(2) The posterior risk associated with the decision rule §, also denoted by p, is given for
any prior distribution vy on (T,7) by p(812ebs) = P(5(Zebs)|Zobs)-

Decision rules which minimize the posterior risk, i.e., for vz-almost all z,,s € Z,
6:/(T(Zobs) € argmin,.p p(VT,alzeps), are called partial Bayes rules.

We have the following result relating partial and non-partial Bayes rules.

Proposition 7.23. Assume that there exists 6 € D such that

ZL(0,6(zops))K (9,d2)vT(d9) < +00.
TxZ
Then, the decision rule 6;’} defined by minimization of the posterior risk, i.e., for any zops € Z,
EjT(zobs) € argmin,.p p(VT,alzeps) satisfies for almost all zgps € Z,

L(9,67 (zopsNK(9,d2)v7(d9) = gnf ZL(9,6(2ops)K(9,d2)vr(d0),

TxZ T eDJTxz

The decision rule 6$T is said to be a Bayes rule with respect to vr. For example,
if Tc Rd, deN*, D=T, Z®,a)= ||19—a||2, and mgz(-) has a second moment, then by
definition 5$T = [; 979 z(dD) is the posterior mean. Bayes rules have optimality properties
in statistical decision theory which make them very interesting; see [Sch95, chapitre 3]
and [Rob07, chapitre 2] for an introduction to the subject.

7.3 Uncertainty quantification

To measure some uncertainty or make some tests, Bayesian statistics consider some
confidence regions. Let (T,7) be a measurable space and g: T — T be a measurable
function. We are interested in estimating a confident region for g(9). Let a € [0,1]. A set
Cq €T is a a-credible region are the sets such that

meiz({9eT: geChz=1l-a.
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Assume that the distribution of g(0) given z,,s admits a density f4(g)z With respect to a
reference measure vg() on (T, 7). Then, we can define a-credible HPD regions (Highest
Posterior Density): C, € 7 is a a-credible HPD region if

{OeT: faoz® >nat cCac{eT : fooz(® =14},
where

Na =sup{neRingz ({9€T: faoz(g®) z=n})=1-a}.

The definition of HPD regions is motivated by the fact that they are a-credible regions
with minimal volume for vz). However it is important to note that this definition of HPD
regions depends on the dominating measure vz(g), see [Sch95, Section 5.2.4].
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