Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:reflectional_coupling

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:reflectional_coupling [2019/05/23 07:15]
douc
world:reflectional_coupling [2022/04/11 13:42]
rdouc ↷ Page moved from mynotes:reflectional_coupling to world:reflectional_coupling
Line 1: Line 1:
 +{{page>:​defs}}
 +
 +====== Reflection coupling ======
 +
 +Let $I$ be the identity matrix with $d$ components. ​
 +
 +We want to find a coupling of $N(0,I)$ and $N(a,I)$ where $a \in \rset^d$. For all $b \in \rset^d$, denote $f_b$ the density of $N(b,I)$. The reflection coupling is based on the following result: Set $R_a=\Id -2 \frac{aa^T}{\|a\|^2}$ as the orthogonal reflection wrt to $\{\rset a\}^\perp$. ​
 +
 +<WRAP center round box 80%> ​
 +__**Lemma**__
 +  * draw independently $X \sim N(0,I)$ and $U \sim \unif(0,​1)$ ​
 +  * set 
 +      * $Y=X$ if $U \leq \frac{f_0\wedge f_a(X)}{f_0(X)}$
 +      * $Y=a+R_aX$ otherwise. ​
 +Then, $Y \sim N(a,I)$.
 +</​WRAP>​
 + 
 +
 +===== Proof =====
 +
 +Since $R_a^2=\Id$,​ we get $R_a=R_a^{-1}$. Then, $y=a+R_a x$ is equivalent to $R_a(y-a)=x$. Moreover, $(\det R_a)^2=\det R_a^2=1$ so that $|\det R_a|=1$. Then, 
 +\begin{align*}
 +\PE\lrb{h(Y)}&​=\int h(x) \ f_0\wedge f_a(x)\ \rmd x+\int h(a+R_ax) (f_0- f_a)^+(x) \rmd x\\
 +&=\int h(x) \ f_0\wedge f_a(x)\ \rmd x+\int h(y) (f_0- f_a)^+(R_a(y-a)) \underbrace{|\det R_a|}_{1} \rmd y 
 +\end{align*}
 +Now, noting that $R_a$ is an isometry and that $R_aa=-a$, we get
 +\begin{align*}
 +\|R_a(y-a)\|^2&​=\|y-a\|^2\\
 +\|R_a(y-a)-a\|^2&​=\|R_ay\|^2=\|y\|^2
 +\end{align*}
 +which implies that $f_0(R_a(y-a))=f_a(y)$ and $f_a(R_a(y-a))=f_0(y)$. Finally, ​
 +$$
 +\PE\lrb{h(Y)}=\int h(x) \ f_0\wedge f_a(x)\ \rmd x+\int h(y) (f_a- f_0)^+(y)\rmd y =\int h(x) f_a(x)\rmd x
 +$$
 +which concludes the proof. ​
 +
 +===== Corollary =====
 +
 +We now intend to construct a coupling of $N(x,h I)$ and $N(y,h I)$. We use the Lemma with $N(0,I)$ and $N(a,I)$ where $a=(y-x)/​\sqrt{h}$ to construct a coupling $(Z,​Z'​)$ and we set $X=x+\sqrt{h}Z$ and $Y=x+\sqrt{h}Z'​$. This is is equivalent to the following coupling. Write $\varphi_{b,​\Gamma}$ the density of $N(b,​\Gamma)$, ​   ​
 +  * Draw independently $Z \sim N(0,I)$ and $U \sim \unif(0,1)$
 +  * Set $X=x+\sqrt{h}Z$ and set
 +        * $Y=X$ if $U \leq \frac{f_0\wedge f_a(Z)}{f_0(Z)}=\frac{\varphi_{x,​h I}\wedge \varphi_{y,​h I}(X)}{\varphi_{x,​h I}(X)}$
 +        * $Y=y+R_{y-x} (\sqrt{h}Z)$ otherwise. ​
 +
  
world/reflectional_coupling.txt · Last modified: 2022/04/11 13:42 by rdouc