Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:random-walk

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:random-walk [2020/04/22 18:36]
rdouc [Other method]
world:random-walk [2023/04/18 14:58] (current)
rdouc [Statement]
Line 4: Line 4:
  
 <WRAP center round box 80%> <WRAP center round box 80%>
-Let $(U_i)$ be iid  Rademacher random variables, i.e. $U_i=1$ or $-1$ with probability $1/2$ and set $S_i=\sum_{j=1}^iU_j$ the associated partial sum. Define $\Delta=\inf\set{t>​0}{S_t=0}$. Show that $S_n$ returns to 0 with probability one. What is the law of $\Delta$? ​+Let $(U_i)$ be iid  Rademacher random variables, i.e. $U_i=1$ or $-1$ with probability $1/2$ and set $S_i=\sum_{j=1}^iU_j$ the associated partial sum. Define $\Delta=\inf\set{t>​0}{S_t=0}$. Show that $S_n$ returns to $0with probability one. What is the law of $\Delta$? ​
 </​WRAP>​ </​WRAP>​
  
Line 46: Line 46:
 ====== Other method ====== ====== Other method ======
  
-Note that, setting $U_i$ such that $X_i=2U_i-1$,​ we have that $(U_i)$ are iid Bernoulli random variables with success probability $1/2$. Then,   ​$\PP(S_{2n}=0)=\PP(\sum_{i=1}^{2n} U_i=n)=\frac{(2n)!}{(n!)^2} \lr{\frac14}^\sim \frac{1}{\sqrt{n\pi}}$ where we have used the Stirling equivalence. This implies that+Note that, setting $U_i$ such that $X_i=2U_i-1$,​ we have that $(U_i)$ are iid Bernoulli random variables with success probability $1/2$. Then,   ​$\PP(S_{2n}=0)=\PP(\sum_{i=1}^{2n} U_i=n)=\frac{(2n)!}{(n!)^2} \lr{\frac14}^{2n} \sim \frac{1}{\sqrt{n\pi}}$ where we have used the Stirling equivalence. This implies that
 \begin{equation} \begin{equation}
 \label{eq:​one} \label{eq:​one}
Line 63: Line 63:
 \end{align*} \end{align*}
 and by the induction assumption, we get $\PP(T^{k+1}<​\infty)=\PP(T<​\infty)^{k+1}$. ​ and by the induction assumption, we get $\PP(T^{k+1}<​\infty)=\PP(T<​\infty)^{k+1}$. ​
-Finally, plugging ​\eqref{eq:​induc} into \eqref{eq:​one}, we finally obtain: ​+Plugging ​\eqref{eq:​induc} into \eqref{eq:​one} ​yields
 $$ $$
 \infty=\sum_{k=1}^\infty \PP(T<​\infty)^k \infty=\sum_{k=1}^\infty \PP(T<​\infty)^k
 $$ $$
 Since $\PP(T<​\infty) \in[0,1]$, this implies that $\PP(T<​\infty)=1$. ​ Since $\PP(T<​\infty) \in[0,1]$, this implies that $\PP(T<​\infty)=1$. ​
world/random-walk.1587573404.txt.gz · Last modified: 2022/03/16 01:37 (external edit)