Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:random-walk

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:random-walk [2020/04/22 18:01]
rdouc [Comments]
world:random-walk [2023/04/18 14:58] (current)
rdouc [Statement]
Line 4: Line 4:
  
 <WRAP center round box 80%> <WRAP center round box 80%>
-Let $(U_i)$ be iid  Rademacher random variables, i.e. $U_i=1$ or $-1$ with probability $1/2$ and set $S_i=\sum_{j=1}^iU_j$ the associated partial sum. Define $\Delta=\inf\set{t>​0}{S_t=0}$. Show that $S_n$ returns to 0 with probability one. What is the law of $\Delta$? ​+Let $(U_i)$ be iid  Rademacher random variables, i.e. $U_i=1$ or $-1$ with probability $1/2$ and set $S_i=\sum_{j=1}^iU_j$ the associated partial sum. Define $\Delta=\inf\set{t>​0}{S_t=0}$. Show that $S_n$ returns to $0with probability one. What is the law of $\Delta$? ​
 </​WRAP>​ </​WRAP>​
  
Line 46: Line 46:
 ====== Other method ====== ====== Other method ======
  
-Note that, setting $U_i$ such that $X_i=2U_i-1$,​ we have $\PP(S_{2n}=0)=\PP(\sum_{i=1}^{2n} U_i=n)=\frac{(2n)!}{(n!)^2} \lr{\frac14}^\sim \frac{1}{\sqrt{n\pi}}$. ​THis implies that +Note that, setting $U_i$ such that $X_i=2U_i-1$,​ we have that $(U_i)$ are iid Bernoulli random variables with success probability $1/2$. Then,   $\PP(S_{2n}=0)=\PP(\sum_{i=1}^{2n} U_i=n)=\frac{(2n)!}{(n!)^2} \lr{\frac14}^{2n} \sim \frac{1}{\sqrt{n\pi}}$ ​where we have used the Stirling equivalenceThis implies that 
 +\begin{equation} 
 +\label{eq:​one} 
 +\infty=\sum_{n=1}^\infty \PP(S_{2n}=0)=\PE[\sum_{n=1}^\infty \indi{0}(S_{2n})]=\PE[\sum_{k=1}^\infty \indi{T^k<​\infty}]=\sum_{k=1}^\infty \PP(T^k<​\infty) 
 +\end{equation} 
 +where $T^k$ is the time index of the $k$-th visit of $(S_n)$ to $0$. By convention, we set $T^1=T$. We now show by induction that for all $k\geq 1$, 
 +\begin{equation} \label{eq:​induc} 
 +\PP(T^k<​\infty)=\PP(T<​\infty)^k\eqsp.  
 +\end{equation} 
 +The case $k=1$ obviously holds. Now, assume that \eqref{eq:​induc} holds for some $k\geq 1$. Then,  
 +\begin{align*} 
 +\PP(T^{k+1}<​\infty)&​=\PP(T^{k}<​\infty,​T^{k+1}<​\infty)=\sum_{m=1}^\infty \sum_{n=1}^\infty\PP(T^{k}=m,​T^{k+1}=m+n)\\ 
 +&​=\sum_{m=1}^\infty \sum_{n=1}^\infty\PP(T^{k}=m,​\forall t\in[1:​n-1],​\ \sum_{\ell=1}^{t}X_{m+\ell}\neq 0,​\sum_{\ell=1}^{n}X_{m+\ell}=0)\\ 
 +&​=\sum_{m=1}^\infty \sum_{n=1}^\infty\PP(T^{k}=m)\underbrace{\PP(\forall t\in[1:​n-1],​\ \sum_{\ell=1}^{t}X_{m+\ell}\neq 0,​\sum_{\ell=1}^{n}X_{m+\ell}=0)}_{\PP(T=n)}\\ 
 +&​=\PP(T^k<​\infty) \PP(T<​\infty) 
 +\end{align*} 
 +and by the induction assumption, we get $\PP(T^{k+1}<​\infty)=\PP(T<​\infty)^{k+1}$.  
 +Plugging \eqref{eq:​induc} into \eqref{eq:​one} yields
 $$ $$
-\infty=\sum_{n=1}^\infty \PP(S_{2n}=0)=\PE[\sum_{n=1}^\infty ​\indi{0}(S_{2n})]+\infty=\sum_{k=1}^\infty \PP(T<\infty)^k
 $$ $$
 +Since $\PP(T<​\infty) \in[0,1]$, this implies that $\PP(T<​\infty)=1$. ​
world/random-walk.1587571262.txt.gz · Last modified: 2022/03/16 01:37 (external edit)