Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:random-walk

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:random-walk [2019/06/21 07:49]
douc [Proof]
world:random-walk [2023/04/18 14:58] (current)
rdouc [Statement]
Line 1: Line 1:
 +{{page>:​defs}}
  
 +====== Statement ======
 +
 +<WRAP center round box 80%>
 +Let $(U_i)$ be iid  Rademacher random variables, i.e. $U_i=1$ or $-1$ with probability $1/2$ and set $S_i=\sum_{j=1}^iU_j$ the associated partial sum. Define $\Delta=\inf\set{t>​0}{S_t=0}$. Show that $S_n$ returns to $0$ with probability one. What is the law of $\Delta$? ​
 +</​WRAP>​
 +
 +====== Proof ======
 +Obviously, $\PP(\Delta=2k+1)=0$. It will be useful in some parts of the proof to note that, by symmetry, $\PP(\Delta=2k,​ S_1>​0)=\PP(\Delta=2k,​ S_1<0)$, so that $\PP(\Delta=2k)=2\PP(\Delta=2k,​ S_1>0)$
 +Define ​
 +\begin{align*}
 +&​\alpha_k=\PP(\Delta=2k,​ S_1>0)\\
 +&​\beta_k=\PP(S_{2k}=0,​ S_i \geq 0, \forall i \in [1:2k-1])
 +\end{align*}
 +Note first that $\alpha_1=1/​4$. Moreover, for all $k>1$,
 +\begin{align*}
 +\alpha_k&​=\PP(\Delta=2k,​ S_1>0)\\
 +&​=\PP(U_1=1,​U_{2k}=-1,​ U_2+\ldots+U_i\geq 0\ \forall i \in [2:2k-2], U_2+\ldots+U_{2k-1}=0)\\
 +&= \beta_{k-1}/​4
 +\end{align*}
 +And since $\sum_{k=1}^{\infty} \alpha_k=\PP(\Delta \in 2\nset^*,​S_1>​0)<​\infty$,​ we deduce that $\sum_{k=1}^{\infty}\beta_k<​\infty$. This allows to define $A(z)=\sum_{k=1}^{\infty} \alpha_k z^k$ and $B(z)=\sum_{k=1}^{\infty} \beta_k z^k$ for all $|z| \leq 1$ and the previous identities implies
 +$$
 +A(z)=\frac{z}{4}+\frac{z B(z)}{4}
 +$$
 +Moreover, by the first entrance decomposition,​
 +\begin{align*}
 +\beta_k&​=\PP(S_{2k}=0,​ S_i \geq 0, \forall i \in [1:2k-1])\\
 +&​=\sum_{\ell=1}^{k} \PP(\Delta=2\ell,​ S_{2k}-S_{2\ell}=0,​ S_i-\underbrace{S_{2\ell}}_{=0}\geq 0,\ \forall i \in [2\ell+1:​2k-1])\\
 +&​=\alpha_k+\sum_{\ell=1}^{k-1} \alpha_\ell \beta_{k-\ell}
 +\end{align*}
 +Multiplying by $z^k$ and summing over $k \in \nset^*$ yields $B(z)=A(z)+A(z)B(z)$. Finally,
 +$$
 +\frac{A(z)-z/​4}{z/​4}=A(z)\lr{1+\frac{A(z)-z/​4}{z/​4}}
 +$$
 +This is equivalent to $0=A^2(z)-A(z)+\frac{z}{4}$ so that $A(z)=\frac{1\pm \sqrt{1-z}}{2}$. Only one of the roots has an expansion with only non-negative coefficients,​ that is, $A(z)=\frac{1-\sqrt{1-z}}{2}$. This implies that 
 +$$
 +\PP(\Delta<​\infty)=\sum_{k=1}^\infty \underbrace{\PP(\Delta=2k)}_{2\PP(\Delta=2k,​S_1>​0)}= 2 A(1)=1
 +$$
 +that is, with probability 1, this random walk returns to 0. 
 +
 +Moroever, expanding $\frac{1-\sqrt{1-z}}{2}$ yields: $A(z)=\sum_{k=1}^{\infty} \begin{pmatrix}2k-2\\k-1\end{pmatrix}
 +\frac{1}{k 4^k} z^k$. Therefore, by symmetry, $\PP(\Delta=2k)=2\PP(\Delta=2k,​S_1>​0)=2\begin{pmatrix}2k-2\\k-1\end{pmatrix}\frac{1}{k 4^k}$. ​
 +
 +
 +====== Other method ======
 +
 +Note that, setting $U_i$ such that $X_i=2U_i-1$,​ we have that $(U_i)$ are iid Bernoulli random variables with success probability $1/2$. Then,   ​$\PP(S_{2n}=0)=\PP(\sum_{i=1}^{2n} U_i=n)=\frac{(2n)!}{(n!)^2} \lr{\frac14}^{2n} \sim \frac{1}{\sqrt{n\pi}}$ where we have used the Stirling equivalence. This implies that
 +\begin{equation}
 +\label{eq:​one}
 +\infty=\sum_{n=1}^\infty \PP(S_{2n}=0)=\PE[\sum_{n=1}^\infty \indi{0}(S_{2n})]=\PE[\sum_{k=1}^\infty \indi{T^k<​\infty}]=\sum_{k=1}^\infty \PP(T^k<​\infty)
 +\end{equation}
 +where $T^k$ is the time index of the $k$-th visit of $(S_n)$ to $0$. By convention, we set $T^1=T$. We now show by induction that for all $k\geq 1$,
 +\begin{equation} \label{eq:​induc}
 +\PP(T^k<​\infty)=\PP(T<​\infty)^k\eqsp. ​
 +\end{equation}
 +The case $k=1$ obviously holds. Now, assume that \eqref{eq:​induc} holds for some $k\geq 1$. Then, 
 +\begin{align*}
 +\PP(T^{k+1}<​\infty)&​=\PP(T^{k}<​\infty,​T^{k+1}<​\infty)=\sum_{m=1}^\infty \sum_{n=1}^\infty\PP(T^{k}=m,​T^{k+1}=m+n)\\
 +&​=\sum_{m=1}^\infty \sum_{n=1}^\infty\PP(T^{k}=m,​\forall t\in[1:​n-1],​\ \sum_{\ell=1}^{t}X_{m+\ell}\neq 0,​\sum_{\ell=1}^{n}X_{m+\ell}=0)\\
 +&​=\sum_{m=1}^\infty \sum_{n=1}^\infty\PP(T^{k}=m)\underbrace{\PP(\forall t\in[1:​n-1],​\ \sum_{\ell=1}^{t}X_{m+\ell}\neq 0,​\sum_{\ell=1}^{n}X_{m+\ell}=0)}_{\PP(T=n)}\\
 +&​=\PP(T^k<​\infty) \PP(T<​\infty)
 +\end{align*}
 +and by the induction assumption, we get $\PP(T^{k+1}<​\infty)=\PP(T<​\infty)^{k+1}$. ​
 +Plugging \eqref{eq:​induc} into \eqref{eq:​one} yields
 +$$
 +\infty=\sum_{k=1}^\infty \PP(T<​\infty)^k
 +$$
 +Since $\PP(T<​\infty) \in[0,1]$, this implies that $\PP(T<​\infty)=1$. ​