Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:pca

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:pca [2022/11/13 18:37]
rdouc [Proof]
world:pca [2022/11/13 18:38] (current)
rdouc [Proof]
Line 35: Line 35:
 \sum_{i=1}^n \norm{\projorth{\rset w_k}X_i}^2=w_k^T S_n w_k=\lambda_k. \sum_{i=1}^n \norm{\projorth{\rset w_k}X_i}^2=w_k^T S_n w_k=\lambda_k.
 \end{equation} \end{equation}
-In particular, $\sum_{i=1}^n \norm{\projorth{\rset ​w_j}X_i}^2=\lambda_1$. Therefore \eqref{eq:​vp} holds true for $p=1$. ​+In particular, $\sum_{i=1}^n \norm{\projorth{\rset ​w_1}X_i}^2=\lambda_1$. Therefore \eqref{eq:​vp} holds true for $p=1$. ​
  
 Assume now that \eqref{eq:​vp} hold true for some $p \in [1:d-1]$ and let $H \in \Hset_{p+1}$. Then, denote by $G=\mathrm{Span}(w_1,​\ldots,​w_p)^\perp$. Since $\mathrm{dim} (G)=d-p$ and $\mathrm{dim}(H)=p+1$,​ we must have $G \cap H \notin \{0\}$ (Otherwise the subspace $G+H$ would be of dimension $d-p+p+1=d+1$ which is not possible). Let $w_0$ a unitary vector of $G \cap H$. Then, we have the decomposition $H=\rset w_0 \stackrel{\perp}{+} H_0$ where $H_0$ is of dimension $p$. Then, applying \eqref{eq:​dim1} Assume now that \eqref{eq:​vp} hold true for some $p \in [1:d-1]$ and let $H \in \Hset_{p+1}$. Then, denote by $G=\mathrm{Span}(w_1,​\ldots,​w_p)^\perp$. Since $\mathrm{dim} (G)=d-p$ and $\mathrm{dim}(H)=p+1$,​ we must have $G \cap H \notin \{0\}$ (Otherwise the subspace $G+H$ would be of dimension $d-p+p+1=d+1$ which is not possible). Let $w_0$ a unitary vector of $G \cap H$. Then, we have the decomposition $H=\rset w_0 \stackrel{\perp}{+} H_0$ where $H_0$ is of dimension $p$. Then, applying \eqref{eq:​dim1}
Line 43: Line 43:
     &​=\sum_{j=p+1}^d \lambda_j (w_0^T w_j)^2 +\sum_{i=1}^n \norm{\projorth{H_0}X_i}^2\\     &​=\sum_{j=p+1}^d \lambda_j (w_0^T w_j)^2 +\sum_{i=1}^n \norm{\projorth{H_0}X_i}^2\\
 \end{align*} \end{align*}
-where we used that $w_0 \in G=\mathrm{Span}(w_1,​\ldots,​w_p)^\perp$. Applying the induction assumption and then \eqref{eq:dim1},+where we used that $w_0 \in G=\mathrm{Span}(w_1,​\ldots,​w_p)^\perp$. Applying the induction assumption and then \eqref{eq:eigenvector},
 \begin{align*} \begin{align*}
     \sum_{i=1}^n \norm{\projorth{H}X_i}^2&​ \leq \lambda_{p+1} \sum_{j=p+1}^d (w_0^T w_j)^2 +\sum_{i=1}^n \norm{\projorth{\mathrm{Span}(w_1,​\ldots,​w_p)}X_i}^2\\     \sum_{i=1}^n \norm{\projorth{H}X_i}^2&​ \leq \lambda_{p+1} \sum_{j=p+1}^d (w_0^T w_j)^2 +\sum_{i=1}^n \norm{\projorth{\mathrm{Span}(w_1,​\ldots,​w_p)}X_i}^2\\
world/pca.1668361044.txt.gz ยท Last modified: 2022/11/13 18:37 by rdouc