Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:partition

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:partition [2019/02/16 09:06]
douc [A useful result for the consistency of Decision Trees.]
world:partition [2023/10/18 16:52]
rdouc [A useful result for the consistency of Decision Trees.]
Line 1: Line 1:
 +{{page>:​defs}}
  
 +====== A useful result for the consistency of Decision Trees. ​ ======
 +Assume that, given iid $(X_i)_{i\in [1:n]}$ taking values in $[0,1]^d$ and some extra random variable $\Theta$, you build a decision tree with cells $A_\ell$. Note that $A_\ell$ are deterministically obtained from $(X_i)_{i\in [1:n]}$ and $\Theta$ but we do not stress the dependence on these variables in the notation.
 +
 +Assume that $Y_i=r(X_i)+\epsilon_i$ where $(\epsilon_i)_{i \in [1:n]}$ are iid, centered with finite variance $\sigma^2$ and the $(\epsilon_i)$ are independent from the $(X_i)$ and $\Theta$. In what follows $(X,Y) \eqlaw (X_1,​Y_1)$. ​
 +Denote
 +$$
 +\hat r_n(x, \Theta) = \sum_{i=1}^n w_{ni} Y_i, \quad \mbox{where} \quad w_{ni}\eqdef \frac{\indiacc{X_i \in A_n(x, \Theta)}}{N_n(x,​ \Theta)}
 +$$
 +where $A_n(x,​\Theta)$ is the cell containing $x$ and $N_n(x, \Theta)=\card\set{i\in [1:n]}{X_i \in A_n(x,​\Theta)}$. ​
 +Define the diameter of any cell $A$ by
 +$$
 +\textrm{diam}(A) = \sup_{x,z \in A} \|x - z\|_2.
 +$$
 +
 +<WRAP center round box 80%>
 +__**Stone'​s theorem**__
 +Assume that 
 +  * $\textrm{diam}(A_n(X,​\Theta)) \to 0$ in probability,​ as $n \to \infty$. ​
 +  * $N_n(X, \Theta) \to \infty$ in probability,​ as $n \to \infty$.
 +Then, 
 +$$
 +\lim_{n\to \infty}\PE\lrb{(\hat r_n(X, \Theta)- r(X))^2} = 0,
 +$$
 +</​WRAP>​
 +
 +
 +$\bproof$
 +The proof is based on the following lemma: ​
 +
 +<WRAP center round box 70%>
 +__**Lemma**__
 +Let $(Z_n)$ be a sequence of random variables that converge to $0$ in probability and take values on $\Zset$. Assume that $F$ is a bounded function on $\Zset$, which is continuous at $0$. Then $\PE[F(Z_n)] \to 0$. 
 +</​WRAP>​
 +**Proof of the Lemma:​**  ​
 +Write 
 +$$
 +\PE[F(Z_n)]=\PE[F(Z_n)\lrcb{\indi{|Z_n| >​\epsilon}+\indi{|Z_n| \leq \epsilon}}]\leq \|F\|_\infty \PP(|Z_n|>​\epsilon) + \sup_{|z| \leq \epsilon} F(z)
 +$$
 +Thus, $\limsup_n \PE[F(Z_n)] \leq  \sup_{|z| \leq \epsilon} F(z)$ and since $\epsilon$ is arbitrary, this concludes the proof. ​
 +$\eproof$
 +
 +Denote $\Delta(\rho)=\sup_{\|u-v\| \leq \rho} |r(u)-r(v)|$ and since $r$ is continuous on the compact set $[0,1]^d$, it is bounded and uniformly continuous. Therefore, $\Delta$ is a bounded function that converges to $0$ as $\rho \to 0$. Then, denoting $\rho_n(X,​\Theta)=\textrm{diam} A_n(X,​\Theta) \in [0,​\sqrt{d}]$,​ we have by the triangular inequality,
 +\begin{align*}
 +\ltwo{\hat r_n(X, \Theta)- r(X)} & \leq \ltwo{\sum_{i=1}^{n} w_{ni} [r(X_i)-r(X)]} + \ltwo{\sum_{i=1}^{n} w_{ni} \epsilon_i}\\
 +& \leq \ltwo{\Delta(\rho_n(X,​\Theta))}+\sigma \PE^{1/​2}\lrb{\sum_{i=1}^{n} w^2_{ni}}\\
 +& \leq \ltwo{\Delta(\rho_n(X,​\Theta))}+\sigma\PE^{1/​2}\lrb{\frac{1}{N_n(X,​\Theta)}\underbrace{\sum_{i=1}^{n} w_{ni}}_{=1}}
 +\end{align*}
 +The proof follows by applying the lemma to the random variables $Z_n=\rho_n(X,​\Theta)$ on $[0,​\sqrt{d}]$ with the function $\Delta$ that is bounded on $[0,​\sqrt{d}]$ and continuous at $0$ and then to the random variables $Z_n=1/​N_n(X,​\Theta)$ taking values on  $[0,1]$ with the bounded function $x\mapsto x$ on $[0,1]$ which is continuous at $0$.
 +$\eproof$
world/partition.txt · Last modified: 2023/10/18 16:52 by rdouc