Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:partition

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
world:partition [2019/02/16 09:06]
douc [A useful result for the consistency of Decision Trees.]
world:partition [2022/03/16 07:40]
127.0.0.1 external edit
Line 1: Line 1:
 +{{page>:​defs}}
  
 +====== A useful result for the consistency of Decision Trees. ​ ======
 +Assume that, given iid $(X_i)_{i\in [1:n]}$ taking values in $[0,1]^d$ and some extra random variable $\Theta$, you build a decision tree with cells $A_\ell$. Note that $A_\ell$ are deterministically obtained from $(X_i)_{i\in [1:n]}$ and $\Theta$ but we do not stress the dependence on these variables in the notation.
 +
 +Assume that $Y_i=r(X_i)+\epsilon_i$ where $(\epsilon_i)_{i \in [1:n]}$ are iid, centered with finite variance $\sigma^2$ and the $(\epsilon_i)$ are independent from the $(X_i)$ and $\Theta$. In what follows $(X,Y) \eqlaw (X_1,​Y_1)$. ​
 +Denote
 +$$
 +\hat r_n(x, \Theta) = \sum_{i=1}^n w_{ni} Y_i, \quad \mbox{where} \quad w_{ni}\eqdef \frac{\indiacc{X_i \in A_n(x, \Theta)}}{N_n(x,​ \Theta)}
 +$$
 +where $A_n(x,​\Theta)$ is the cell containing $x$ and $N_n(x, \Theta)=\card\set{i\in [1:n]}{X_i \in A_n(x,​\Theta)}$. ​
 +Define the diameter of any cell $A$ by
 +$$
 +\textrm{diam}(A) = \sup_{x,z \in A} \|x - z\|_2.
 +$$
 +
 +<WRAP center round box 80%>
 +__**Theorem**__
 +Assume that 
 +  * $\textrm{diam}(A_n(X,​\Theta)) \to 0$ in probability,​ as $n \to \infty$. ​
 +  * $N_n(X, \Theta) \to \infty$ in probability,​ as $n \to \infty$.
 +Then, 
 +$$
 +\lim_{n\to \infty}\PE\lrb{(\hat r_n(X, \Theta)- r(X))^2} = 0,
 +$$
 +</​WRAP>​
 +
 +
 +$\bproof$
 +The proof is based on the following lemma: ​
 +
 +<WRAP center round box 70%>
 +__**Lemma**__
 +Let $(Z_n)$ be a sequence of random variables that converge to $0$ in probability and take values on $\Zset$. Assume that $F$ is a bounded function on $\Zset$, which is continuous at $0$. Then $\PE[F(Z_n)] \to 0$. 
 +</​WRAP>​
 +**Proof of the Lemma:​**  ​
 +Write 
 +$$
 +\PE[F(Z_n)]=\PE[F(Z_n)\lrcb{\indi{|Z_n| >​\epsilon}+\indi{|Z_n| \leq \epsilon}}]\leq \|F\|_\infty \PP(|Z_n|>​\epsilon) + \sup_{|z| \leq \epsilon} F(z)
 +$$
 +Thus, $\limsup_n \PE[F(Z_n)] \leq  \sup_{|z| \leq \epsilon} F(z)$ and since $\epsilon$ is arbitrary, this concludes the proof. ​
 +$\eproof$
 +
 +Denote $\Delta(\rho)=\sup_{\|u-v\| \leq \rho} |r(u)-r(v)|$ and since $r$ is continuous on the compact set $[0,1]^d$, it is bounded and uniformly continuous. Therefore, $\Delta$ is a bounded function that converges to $0$ as $\rho \to 0$. Then, denoting $\rho_n(X,​\Theta)=\textrm{diam} A_n(X,​\Theta) \in [0,​\sqrt{d}]$,​ we have by the triangular inequality,
 +\begin{align*}
 +\ltwo{\hat r_n(X, \Theta)- r(X)} & \leq \ltwo{\sum_{i=1}^{n} w_{ni} [r(X_i)-r(X)]} + \ltwo{\sum_{i=1}^{n} w_{ni} \epsilon_i}\\
 +& \leq \ltwo{\Delta(\rho_n(X,​\Theta))}+\sigma \PE^{1/​2}\lrb{\sum_{i=1}^{n} w^2_{ni}}\\
 +& \leq \ltwo{\Delta(\rho_n(X,​\Theta))}+\sigma\PE^{1/​2}\lrb{\frac{1}{N_n(X,​\Theta)}\underbrace{\sum_{i=1}^{n} w_{ni}}_{=1}}
 +\end{align*}
 +The proof follows by applying the lemma to the random variables $Z_n=\rho_n(X,​\Theta)$ on $[0,​\sqrt{d}]$ with the function $\Delta$ that is bounded on $[0,​\sqrt{d}]$ and continuous at $0$ and then to the random variables $Z_n=1/​N_n(X,​\Theta)$ taking values on  $[0,1]$ with the bounded function $x\mapsto x$ on $[0,1]$ which is continuous at $0$.
 +$\eproof$
world/partition.txt · Last modified: 2023/10/18 16:52 by rdouc