Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:max

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:max [2021/10/06 10:35]
rdouc [Proof]
world:max [2022/03/16 07:40] (current)
Line 14: Line 14:
 The function $h$ is strictly convex and $\lim_{\beta \to \pm \infty}|h (x)|=\infty$. This implies that $h$ admits a unique minimizer The function $h$ is strictly convex and $\lim_{\beta \to \pm \infty}|h (x)|=\infty$. This implies that $h$ admits a unique minimizer
 $\beta^\star$. $\beta^\star$.
-  * $\beta^\star\neq 0$, in which case $h' (\beta^\star)=0$. This +  * **Case 1**: $\beta^\star\neq 0$, in which case $h' (\beta^\star)=0$. This implies $2 (\beta^\star-u)+c \sgn(\beta^\star)=0$. Therefore $2u=\sgn(\beta^\star)\lr{2|\beta^\star|+c}$,​ which implies $\sgn (u)=\sgn (\beta^\star)$. Therefore $2 (\beta^\star-u)+c \sgn(u)=0$ 
-  ​implies $2 (\beta^\star-u)+c \sgn(\beta^\star)=0$. Therefore +  from which we deduce $\beta^\star=u \lr{1-\frac{c}{2|u|}}$. Using again $\sgn (u)=sgn (\beta^\star)$,​ we deduce ​ $1-\frac{c}{2|u|}\geq 0$ and finally, 
-  ​$2u=\sgn(\beta^\star)\lr{2|\beta^\star|+c}$,​ which implies $\sgn (u)=\sgn (\beta^\star)$. Therefore $2 (\beta^\star-u)+c \sgn(u)=0$ +$$
-  from which we deduce $\beta^\star=u \lr{1-\frac{c}{2|u|}}$. Using +
-  ​again $\sgn (u)=sgn (\beta^\star)$,​ we deduce ​ $1-\frac{c}{2|u|}\geq 0$ and finally, +
-  $$+
 \beta^\star=u \lr{1-\frac{c}{2|u|}}^+ \beta^\star=u \lr{1-\frac{c}{2|u|}}^+
 $$ $$
-  * $\beta^\star= 0$. In this case, for all $\beta \neq 0$,  +  * **Case 2**: $\beta^\star= 0$. In this case, for all $\beta \neq 0$, $h (\beta) \geq h (0)=u^2$, which is equivalent to $\beta^2-2 \beta u+c|\beta|\geq 0$. Dividing by $|\beta|$ and letting $\beta\to 0$, we get $-2 u\sgn(\beta)+c \geq 0$ which in turn implies $-2|u|+c\geq 0$. This shows $1-\frac{c}{2|u|}\leq 0$ and we therefore have again: 
-  ​$h (\beta) \geq h (0)=u^2$, which is equivalent to $\beta^2-2 \beta u+c|\beta|\geq 0$. Dividing by $|\beta|$ and letting $\beta\to 0$, we +$$
-  ​get $-2 u\sgn(\beta)+c \geq 0$ which in turn implies $-2|u|+c\geq 0$. This shows $1-\frac{c}{2|u|}\leq 0$ and we therefore have +
-  ​again: +
-  $$+
 \beta^\star=0=u \lr{1-\frac{c}{2|u|}}^+ \beta^\star=0=u \lr{1-\frac{c}{2|u|}}^+
-  ​$$+$$
  
world/max.1633509341.txt.gz · Last modified: 2022/03/16 01:37 (external edit)