Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:max

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

world:max [2021/10/06 10:35]
rdouc [Proof]
world:max [2022/03/16 07:40]
Line 1: Line 1:
-{{page>:​defs}} 
- 
-$\newcommand{\sgn}{\mathrm{sgn}}$ 
-====== Statement ====== 
- 
-Let $h (\beta)= (\beta -u)^2+c |\beta|$ where $u>0$. Show that the 
-argmin of $h$ can be written as 
-$$ 
-\beta^\star=u \lr{1-\frac{c}{2|u|}}^+ 
-$$ 
- 
-====== Proof ====== 
- 
-The function $h$ is strictly convex and $\lim_{\beta \to \pm \infty}|h (x)|=\infty$. This implies that $h$ admits a unique minimizer 
-$\beta^\star$. 
-  * $\beta^\star\neq 0$, in which case $h' (\beta^\star)=0$. This 
-  implies $2 (\beta^\star-u)+c \sgn(\beta^\star)=0$. Therefore 
-  $2u=\sgn(\beta^\star)\lr{2|\beta^\star|+c}$,​ which implies $\sgn (u)=\sgn (\beta^\star)$. Therefore $2 (\beta^\star-u)+c \sgn(u)=0$ 
-  from which we deduce $\beta^\star=u \lr{1-\frac{c}{2|u|}}$. Using 
-  again $\sgn (u)=sgn (\beta^\star)$,​ we deduce ​ $1-\frac{c}{2|u|}\geq 0$ and finally, 
-  $$ 
-\beta^\star=u \lr{1-\frac{c}{2|u|}}^+ 
-$$ 
-  * $\beta^\star= 0$. In this case, for all $\beta \neq 0$,  
-  $h (\beta) \geq h (0)=u^2$, which is equivalent to $\beta^2-2 \beta u+c|\beta|\geq 0$. Dividing by $|\beta|$ and letting $\beta\to 0$, we 
-  get $-2 u\sgn(\beta)+c \geq 0$ which in turn implies $-2|u|+c\geq 0$. This shows $1-\frac{c}{2|u|}\leq 0$ and we therefore have 
-  again: 
-  $$ 
-\beta^\star=0=u \lr{1-\frac{c}{2|u|}}^+ 
-  $$ 
  
world/max.txt ยท Last modified: 2022/03/16 07:40 (external edit)