Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:max

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
world:max [2021/10/06 10:34]
rdouc
world:max [2021/10/06 10:37]
rdouc [Proof]
Line 12: Line 12:
 ====== Proof ====== ====== Proof ======
  
-The function $h$ is strictly convex and $\lim_{\beta \to \pm \infty} +The function $h$ is strictly convex and $\lim_{\beta \to \pm \infty}|h (x)|=\infty$. This implies that $h$ admits a unique minimizer
-|h (x)|=\infty$. This implies that $h$ admits a unique minimizer+
 $\beta^\star$. $\beta^\star$.
-  * $\beta^\star\neq 0$, in which case $h' (\beta^\star)=0$. This +  * **Case 1**: $\beta^\star\neq 0$, in which case $h' (\beta^\star)=0$. This implies $2 (\beta^\star-u)+c \sgn(\beta^\star)=0$. Therefore $2u=\sgn(\beta^\star)\lr{2|\beta^\star|+c}$,​ which implies $\sgn (u)=\sgn (\beta^\star)$. Therefore $2 (\beta^\star-u)+c \sgn(u)=0$ 
-  ​implies $2 (\beta^\star-u)+c \sgn(\beta^\star)=0$. Therefore +  from which we deduce $\beta^\star=u \lr{1-\frac{c}{2|u|}}$. Using again $\sgn (u)=sgn (\beta^\star)$,​ we deduce ​ $1-\frac{c}{2|u|}\geq 0$ and finally, 
-  ​$2u=\sgn(\beta^\star)\lr{2|\beta^\star|+c}$,​ which implies $\sgn (u)= +$$
-  ​\sgn (\beta^\star)$. Therefore $2 (\beta^\star-u)+c \sgn(u)=0$ +
-  from which we deduce $\beta^\star=u \lr{1-\frac{c}{2|u|}}$. Using +
-  ​again $\sgn (u)= +
-  \sgn (\beta^\star)$,​ we deduce ​ $1-\frac{c}{2|u|}\geq 0$ and finally, +
-  $$+
 \beta^\star=u \lr{1-\frac{c}{2|u|}}^+ \beta^\star=u \lr{1-\frac{c}{2|u|}}^+
 $$ $$
-  ​* $\beta^\star= 0$. In this case, for all $\beta \neq 0$,  +**Case 2**: $\beta^\star= 0$. In this case, for all $\beta \neq 0$, $h (\beta) \geq h (0)=u^2$, which is equivalent to $\beta^2-2 \beta u+c|\beta|\geq 0$. Dividing by $|\beta|$ and letting $\beta\to 0$, we get $-2 u\sgn(\beta)+c \geq 0$ which in turn implies $-2|u|+c\geq 0$. This shows $1-\frac{c}{2|u|}\leq 0$ and we therefore have again: 
-  ​$h (\beta) \geq h (0)=u^2$, which is equivalent to $\beta^2-2 \beta +$$
-  ​u+c|\beta|\geq 0$. Dividing by $|\beta|$ and letting $\beta\to 0$, we +
-  ​get $-2 u\sgn(\beta)+c \geq 0$ which in turn implies +
-  ​$-2|u|+c\geq 0$. This shows $1-\frac{c}{2|u|}\leq 0$ and we therefore have +
-  ​again: +
-  $$+
 \beta^\star=0=u \lr{1-\frac{c}{2|u|}}^+ \beta^\star=0=u \lr{1-\frac{c}{2|u|}}^+
-  ​$$+$$
  
world/max.txt · Last modified: 2022/03/16 07:40 (external edit)