Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:martingale

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

world:martingale [2021/03/20 09:04]
rdouc [Proof]
world:martingale [2022/03/16 07:40]
Line 1: Line 1:
-{{page>:​defs}} 
- 
-===== Supermartingale convergence results ===== 
- 
-<WRAP center round tip 80%> 
-**__Theorem__**. ​ 
-Let $\mcf=(\mcf_n)_{n\in\nset}$ be a filtration and let $\seq{X_n}{n\in\nset}$ be an $\mcf$-adapted sequence of $\lone$-random variables such that  
-  *  $M=\sup_{n\in\nset} \PE[(X_n)^-]<​\infty$ 
-  *  for all $n\geq 1$, we have $\PE[X_{n}|\mcf_{n-1}]\leq X_{n-1}$. ​   
-that is, $\seq{X_n}{n\in\nset}$ is a $(\mcf_n)_{n\in\nset}$-supermartingale,​ with negative part bounded in $\lone$. ​ 
-Then, almost surely, $X_\infty=\lim_{n\to\infty} X_n$ exists and is in $\lone$. 
- 
-</​WRAP>​ 
-  
- 
- 
-==== Proof ==== 
- 
-Let $a<b$ and define ​ $C_1=\indiacc{X_0<​a}$ and for $n\geq 2$,  
-$$ 
-C_n=\indiacc{C_{n-1}=1,​X_{n-1} \leq b}+\indiacc{C_{n-1}=0,​X_{n-1} \leq a} 
-$$ 
-In words, the first time $C_n $ flags $1$ is when $X_{n-1}<​a$. Then it flags $1$ until $X_{n-1}$ goes above $b$. Then it flags $0$ until $X_n$ goes below $a$. So consecutive sequences of $C_n=1$ are linked with upcrossings of $[a,b] $ for $(X_n) $. Now, define ​ 
-$$ 
-Y_n=\sum_{k=1}^n C_k(X_k-X_{k-1}). 
-$$ 
- 
-Define $U_N[a,b]$ the number of upcrossings of $[a,b]$ for $(X_n)_{0\leq n \leq N } $. Then,  
-$$ 
-Y_N=\sum_{k=1}^N C_k(X_k-X_{k-1}) \geq (b-a) U_N[a,​b]-(X_N-a)^- 
-$$ 
-From the fact that $\seq{X_n}{n\in\nset}$ is a $\mcf$-supermartingale and $(C_n)_{n\in\nset}$ is $\mcf$-previsible,​ we deduce that $\seq{Y_n}{n\in\nset}$ is also a $\mcf$-supermartingale so that $\PE[Y_N]\leq 0$. Then,  ​ 
-$$ 
-(b-a) \PE[U_N[a,​b]] \leq \PE[(X_N-a)^-]=\PE[(a-X_N)^+] \leq a^+ + \PE[(-X_N)^+]\leq a^+ + M 
-$$ 
-Letting $N$ goes to infinity, the monotone convergence theorem yields: ​ 
-$$ 
-(b-a) \PE[U_\infty[a,​b]] \leq  a^+ + M 
-$$ 
-and thus, $\PP(U_\infty[a,​b]<​\infty)=1$ for all $a<b$. Now,  
-\begin{align*} 
-  \PP(\liminf_n X_n<​\limsup_n X_n) &\leq \sum_{a,​b\in \mathbb{Q}, a<b} \PP\lr{\liminf_n X_n <​a<​b<​\limsup_n X_n}\\ 
-  & \leq \sum_{a,​b\in \mathbb{Q}, a<​b} ​ \PP(U_\infty[a,​b]=\infty)=0 
-\end{align*} 
-which shows that $X_\infty=\lim_{n \to \infty} X_n$ exits almost surely. ​ 
- 
-Morevoer, $\PE[X_0] \geq \PE[X_n]=\PE[X^+_n]-\PE[X^-_n]$ so that 
-$$ 
-\sup_n \PE[|X_n|]=\sup_n \lr{\PE[X^+_n]+\PE[X^-_n]} ​ \geq \PE[X_0] +2 \sup_n \PE[X^-_n] \leq \PE[X_0] +2 M<​\infty  ​ 
-$$ 
-which implies by Fatou'​s lemma that $\PE[|X_\infty|]=\PE[\liminf_{n}|X_\infty|] \leq \liminf_{n} \PE[|X_\infty|] \leq \sup_n ​  ​\PE[|X_n|]<​\infty$. The proof is completed. 
-===== Corollary: Submartingale convergence results ===== 
-  
-{{anchor:​submartingale:​}} 
-As a consequence,​ the conclusion also holds if $\seq{X_n}{n\in\nset}$ is a $\mcf$-submartingale,​ with positive part bounded in $\lone$ : indeed, we only need to apply the previous result to $-X_n$.  ​ 
- 
-<WRAP center round tip 80%> 
-**__Corollary__** Assume that $\mcf=(\mcf_n)_{n\in\nset}$ is a filtration and let $\seq{X_n}{n\in\nset}$ be an $\mcf$-adapted sequence of $\lone$ random variables such that  
-  * $M=\sup_{n\in\nset} \PE[(X_n)^+]<​\infty$ 
-  * for all $n\geq 1$, we have $\PE[X_{n}|\mcf_{n-1}]\geq X_{n-1}$. 
-that is, $\seq{X_n}{n\in\nset}$ is a $\mcf$-submartingale,​ with positive part bounded in $\lone$. ​ 
-Then, almost surely, $X_\infty=\lim_{n\to\infty} X_n$ exists and is in $\lone$. 
- 
-</​WRAP>​ 
-    
  
world/martingale.txt ยท Last modified: 2022/03/16 07:40 (external edit)