Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:marcinkiewicz

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
world:marcinkiewicz [2022/01/15 10:41]
rdouc créée
world:marcinkiewicz [2022/03/16 07:40] (current)
Line 81: Line 81:
  
  
-Using the [[rayan:11_marcinkiewicz_zygmund#​g_lemma|$g$-lemma]] with $g \colon x \mapsto x^p$ we deduce+Using the [[world:marcinkiewicz#​g_lemma|$g$-lemma]] with $g \colon x \mapsto x^p$ we deduce
 \begin{align*} \begin{align*}
     \PE \lrb{\lrav{S_n}^p} = p \int_{\rset_+} x^{p-1} \PP\lr{\lrav{S_n} \geq x} \rmd x &\leq \sum_{i=1}^n p \int_{\rset_+} x^{p-1} \PP\lr{\lrav{X_i} \geq x} \rmd x + 2p e^r \int_{\rset_+} \frac {x^{p-1}} {\lr{1 + \frac {x^2} {r B_n}}^r} \rmd x \\     \PE \lrb{\lrav{S_n}^p} = p \int_{\rset_+} x^{p-1} \PP\lr{\lrav{S_n} \geq x} \rmd x &\leq \sum_{i=1}^n p \int_{\rset_+} x^{p-1} \PP\lr{\lrav{X_i} \geq x} \rmd x + 2p e^r \int_{\rset_+} \frac {x^{p-1}} {\lr{1 + \frac {x^2} {r B_n}}^r} \rmd x \\
Line 121: Line 121:
     \leq 2^p \mathbb{E}\lrb{\norm{X}^p} .     \leq 2^p \mathbb{E}\lrb{\norm{X}^p} .
 \end{equation*} \end{equation*}
-Moreover, by equivalence of norms in finite dimension, the result only needs to be proved for the norm $\norm{\cdot}_p$ on $\rset^d$. Using the [[rayan:11_marcinkiewicz_zygmund#​mz|Marcinkiewicz–Zygmund inequality]] in dimension 1 provides+Moreover, by equivalence of norms in finite dimension, the result only needs to be proved for the norm $\norm{\cdot}_p$ on $\rset^d$. Using the [[world:marcinkiewicz#​mz|Marcinkiewicz–Zygmund inequality]] in dimension 1 provides
 \begin{align*} \begin{align*}
     \mathbb{E}\lrb{\norm{\sum_{i=1}^n X_i }_p^p} &= \mathbb{E}\lrb{\sum_{j=1}^d \lrav{ \sum_{i=1}^n X_i(j) }^p} \\     \mathbb{E}\lrb{\norm{\sum_{i=1}^n X_i }_p^p} &= \mathbb{E}\lrb{\sum_{j=1}^d \lrav{ \sum_{i=1}^n X_i(j) }^p} \\
Line 130: Line 130:
 \end{align*} \end{align*}
 </​hidden>​ </​hidden>​
- 
-====== Some notation ====== 
-Reminder of the notation introduced in [[https://​projecteuclid.org/​download/​pdf_1/​euclid.aos/​1059655912|Fort,​ Moulines (2003)]] p.12. 
- 
-Let $p > 0$, $\lr{X_n}_{n \in \nset}$ a sequence of random variables and $\lr{\alpha_n}_{n \in \nset}$ a sequence of nonzero real numbers. We write $X_n = O_{L^p}(\alpha_n)$ if $\lr{\alpha_n^{-1} X_n}_{n \in \nset}$ is bounded in $L^p$. 
- 
-{{anchor:​o_lemma:​}} 
-====== $O$-lemma ====== 
- 
-Let $p > 0$ and $\lr{X_n}_{n \in \nset}$ a sequence of random variables such that $X_n = O_{L^p}(\alpha_n)$ with $\sum_{n=0}^{\infty} \alpha_n^p < \infty$. Then, 
-\begin{equation*} 
-    \lr{X_n}_{n \in \nset} \overset{a.s}{\rightarrow} 0. 
-\end{equation*} 
- 
-<​hidden>​ 
-By assumption, there exists $C \in \rset_+^*$ such that for all $n \in \nset$, $\alpha_n^{-1} \norm{X_n}_{L^p} \leq C$. 
- 
-Let $\epsilon > 0$. By Markov inequality, for all $n \in \nset$, 
-\begin{equation*} 
-    \mathbb{P}\lr{\norm{X_n }_p \geq \epsilon} \leq \frac {\PE\lrb{\norm{X_n}_p^p}} {\epsilon^p} 
-    = \frac {\norm{X_n}_{L_p}^p} {\epsilon^p} 
-    \leq \frac {C^p} {\epsilon^p} \alpha_n^p, 
-\end{equation*} 
-hence 
-\begin{equation*} 
-    \sum_{n=0}^{\infty} \mathbb{P}\lr{\norm{X_n }_p \geq \epsilon} \leq \frac {C^p} {\epsilon^p} \sum_{n=0}^{\infty} \alpha_n^p < \infty . 
-\end{equation*} 
-By Borel-Cantelli lemma we deduce that almost surely, $\norm{X_n }_p < \epsilon$ for sufficiently large $n$. 
-That being true for all $\epsilon > 0$, it is true for all $\epsilon = \frac 1 k$ with $k \in \nset^*$, and from a countable intersection of almost sure events $\lr{X_n}_{n \in \nset} \overset{a.s}{\rightarrow} 0$. 
-</​hidden>​ 
- 
-{{anchor:​mz_slln:​}} 
-====== Triangular strong law of large numbers ====== 
- 
-<WRAP center round box 80%> 
-Let $d \in \nset^*$ and $\lr{X_{n,​i}}_{1 \leq i \leq m_n, n\in\nset}$ i.i.d. random variables of $\rset^d$ with $\lr{m_n}_{n \in \nset} \in {\nset^*}^{\nset}$. 
-Assume the existence of $p \geq 2$ such that $X_{1,1} \in L^p$ and $\sum_{i=1}^{\infty} m_n^{-p/2} < \infty$. Then, 
-\begin{equation*} 
-    \frac 1 {m_n} \sum_{i=1}^{m_n} X_{n,i} \overset{a.s}{\rightarrow} \PE\lr{X_{1,​1}}. 
-\end{equation*} 
-</​WRAP>​ 
- 
-<​hidden>​ 
-The $\lr{X_{n,​i}}_{1 \leq i \leq m_n, n\in\nset}$ being i.i.d. and in $L^p(\rset^d)$,​ the [[rayan:​11_marcinkiewicz_zygmund#​multi_mz|generalized Marcinkiewicz–Zygmund inequality]] yields 
-\begin{equation*} 
-    \frac 1 {m_n} \sum_{i=1}^{m_n} X_{n,i} - \PE\lr{X_{1,​1}} = O_{L^p}\lr{m_n^{-1/​2}}. 
-\end{equation*} 
-As $\sum_{i=1}^{\infty} m_n^{-p/2} < \infty$ by assumption, the [[rayan:​11_marcinkiewicz_zygmund#​o_lemma|$O$-lemma]] concludes the proof. 
-</​hidden>​ 
- 
-**Remark:** The assumptions of the theorem hold as soon as $m_n = n$ for all $n \in \nset^*$ and $X_{1,1} \in L^p$ with $p>2$. 
- 
-**Remark:** For $p=2$, look at Theorem 2.19 of Hall, Heyde {{ :​rayan:​hallheyde.pdf |Martingal Limit Theory and its application}}. 
- 
- 
-{{anchor:​compact_slln:​}} 
-====== Compact strong law of large numbers ====== 
- 
-Let $\Theta$ be a compact subset of $\rset^d$ with $d \in \nset^*$, $Z$ a measurable space, $\zeta$ a random variable taking its values on $Z$, and $L$ a measurable function defined on $\Theta \times Z$. 
-Define on $\Theta$ the function $\mathcal{L} \colon \theta \mapsto \mathbb{E}\lrb{L(\theta,​ \zeta)}$, and for all $\theta \in \Theta$ and $n \in \nset$, the Monte-Carlo average 
-\begin{equation*} 
-    \hat{\mathcal{L}}^n(\theta) \eqdef \frac 1 {m_n} \sum_{i=1}^{m_n} L(\theta, \zeta_{n,​i}),​ 
-\end{equation*} 
-where $\lr{m_n} \in {\nset^*}^{\nset}$ and $\lr{\zeta_{n,​i}}_{1 \leq i \leq m_n}$ are i.i.d. random variables with $\zeta_{n,​1} \sim \zeta$. ​ 
- 
-Assume that: 
-  - $\mathcal{L}$ is continuous on $\Theta$, 
-  - there exists a measurable function $\Gamma \colon Z \rightarrow \rset_+$ such that a.s., for all $\theta \in \Theta$, $|L(\theta, \zeta)| \leq \Gamma(\zeta) \in L^p$ with $p \geq 2$, 
-  - $\sum_{i=1}^{\infty} m_n^{-p/2} < \infty$. 
-Then, 
-\begin{equation*} 
-    \underset{\Theta}{\sup} \lrav{\mathcal{L} - \hat{\mathcal{L}}^n} \overset{a.s.}{\rightarrow} 0. 
-\end{equation*} 
- 
- 
- 
-<​hidden>​ 
-Let $\delta > 0$ and $\theta_0 \in \Theta$. Write 
-\begin{equation*} 
-    \mathcal{L} - \hat{\mathcal{L}}^n = \mathcal{L} - \mathcal{L} \lr{\theta_0} + \mathcal{L} \lr{\theta_0} - \hat{\mathcal{L}}^n. 
-\end{equation*} 
-By continuity of $\mathcal{L}$ there exists $\epsilon_1 > 0$ such that $\underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_1}}{\sup} \lr{\mathcal{L} - \mathcal{L} \lr{\theta_0}} \leq \frac {\delta} 3$. For all $\epsilon > 0$, 
-\begin{align*} 
-    \underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\sup} \lr{\mathcal{L} \lr{\theta_0} - \hat{\mathcal{L}}^n} 
-    &= \PE\lrb{L\lr{\theta_0,​ \zeta}} - \underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} \frac 1 {m_n} \sum_{i=1}^{m_n} L\lr{\theta,​ \zeta_{n,​i}} \\ 
-    &\leq \PE\lrb{L\lr{\theta_0,​ \zeta}} - \frac 1 {m_n} \sum_{i=1}^{m_n} \underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta_{n,​i}} \\ 
-    &= \PE\lrb{L\lr{\theta_0,​ \zeta}} - \PE\lrb{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta}} + \PE\lrb{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta}} - \frac 1 {m_n} \sum_{i=1}^{m_n} \underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta_{n,​i}}. 
-\end{align*} 
-By the monotone convergence theorem, there exists $\epsilon_2 \in (0; \epsilon_1)$ such that 
-\begin{equation*} 
-    \PE\lrb{L\lr{\theta_0,​ \zeta}} - \PE\lrb{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\inf} L\lr{\theta,​ \zeta}} \leq \frac {\delta} 3. 
-\end{equation*} 
-We easily prove that a.s., $\lrav{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\inf} L\lr{\theta,​ \zeta}} \leq \Gamma(\zeta) \in L^p$. Together with assumption 3. this allows us to apply the [[rayan:​11_marcinkiewicz_zygmund#​mz_slln|triangular strong law of large numbers]] to $\lr{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta_{n,​i}}}_{1\leq i \leq m_n, n\in\nset}$,​ which provides a.s. the existence of $n_0 \in \nset$ such that for all $n \geq n_0$, 
-\begin{equation*} 
-    \PE\lrb{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\inf} L\lr{\theta,​ \zeta}} - \frac 1 {m_n} \sum_{i=1}^{m_n} \underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\inf} L\lr{\theta,​ \zeta_{n,​i}} \leq \frac {\delta} 3. 
-\end{equation*} 
-Together with the definitions of $\epsilon_1$ and $\epsilon_2$,​ this yields the existence a.s. of $n_0 \in \nset$ such that for all $n_0 \geq n$,  
-\begin{equation*} 
-    \underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\sup} \lr{\mathcal{L} - \hat{\mathcal{L}}^n} \leq \underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_1}}{\sup} \lr{\mathcal{L} - \mathcal{L}(\theta_0)} + \underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\sup} \lr{\mathcal{L}(\theta_0) - \hat{\mathcal{L}}^n} \leq \delta. 
-\end{equation*} 
-By compacity of $\Theta \subset \underset{\theta \in \Theta}{\cup} \mathbf{B}\lr{\theta,​ \epsilon_2(\theta)}$,​ we can extract a finite subcover $\underset{1 \leq i \leq I}{\cup} \mathbf{B}\lr{\theta_i,​ \epsilon_2(\theta_i)}$ of $\Theta$ with $I \in \nset$. 
-By finite intersection of almost sure events, there exists a.s. $n_0 \eqdef \max\lr{n_0(\theta_1),​ \dots, n_0(\theta_I)}$ such that for all $n \geq n_0$, 
-\begin{equation*} 
-    \underset{\Theta}{\sup} \lr{\mathcal{L} - \hat{\mathcal{L}}^n} = \underset{1 \leq i \leq I}{\max} \underset{\Theta \cap \mathbf{B}\lr{\theta_i,​ \epsilon_2(\theta_i)}}{\sup} \lr{\mathcal{L} - \hat{\mathcal{L}}^n} \leq \delta. 
-\end{equation*} 
-That being true for all $\delta = \frac 1 k$ with $k \in \nset^*$, by countable intersection of almost sure events, $\max\lr{0, \eqsp \underset{\Theta}{\sup} \lr{\mathcal{L} - \hat{\mathcal{L}}^n}} \overset{a.s.}{\rightarrow} 0$. The same reasoning with $L = - L$ provides $\underset{\Theta}{\sup} \lrav{\mathcal{L} - \hat{\mathcal{L}}^n} \overset{a.s.}{\rightarrow} 0$. 
-</​hidden>​ 
- 
-**Remark.** If $L$ is continuous with respect to the first variable $\theta$, by Lebesgue'​s dominated convergence theorem under assumption 2. the function $\mathcal{L}$ is continuous (i.e. assumption 1. is verified). 
- 
  
world/marcinkiewicz.1642239717.txt.gz · Last modified: 2022/03/16 01:36 (external edit)