Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:marcinkiewicz

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

world:marcinkiewicz [2022/01/15 10:41]
rdouc créée
world:marcinkiewicz [2022/03/16 07:40]
Line 1: Line 1:
-{{page>:​defs}} 
- 
-{{anchor:​g_lemma:​}} 
-====== $g$-lemma ====== 
- 
- 
-Let $X$ be a random variable non-negative a.s. and $g \colon \rset_+ \rightarrow \rset_+$ an increasing differentiable function such that $g(0)=0$. 
-Then, 
-\begin{equation*} 
-    \PE\lrb{g(X)} = \int_{\rset_+} g'(x) \PP\lr{X \geq x} \rmd x \in \rset_+ \cup \lrc{+\infty}. 
-\end{equation*} 
- 
-<​hidden>​ 
-Write, using that for $x\in \rset_+$, $g'(x) 1_{X\geq x}\geq 0$,  ​ 
-\begin{equation*} 
-    \int_{\rset_+} g'(x) \underbrace{\PP\lr{X \geq x}}_{\PE\lrb{1_{X\geq x}}} \rmd x = 
-    \int_{\rset_+} \PE \lrb{g'​(x) 1_{X\geq x}} \rmd x = 
-    \PE \lrb{\int_{\rset_+} g'(x) 1_{X\geq x} \rmd x} = 
-    \PE \lrb{\int_{0}^X g'​(x)\rmd x} = \PE \lrb{g(X) - \underbrace{g(0)}_{=0}}. 
-\end{equation*} 
-</​hidden>​ 
- 
-====== Convexity inequality ====== 
- 
-Let $p \geq 1$, $n \in \nset$ and $\lr{X_i}_{1\leq i \leq n}$ real-valued random variables. Then, by convexity 
-\begin{equation*} 
-    \PE \lrb{\lrav{\sum_{i=1}^n X_i}^p} \leq n^{p-1} \sum_{i=1}^n \PE \lrb{\lrav{X_i}^p}. 
-\end{equation*} 
- 
-{{anchor:​mz:​}} 
-====== Marcinkiewicz–Zygmund inequality ====== 
- 
-<WRAP center round box 80%> 
-Let $p \geq 2$, $n \in \nset$ and $\lr{X_i}_{1\leq i \leq n}$ centered **independent** real-valued random variables in $L^p$. Then, there exists a universal constant $C_p$ depending only on $p$ such that 
-\begin{equation*} 
-    \PE \lrb{\lrav{\sum_{i=1}^n X_i}^p} \leq C_p \eqsp n^{p/2-1} \sum_{i=1}^n \PE \lrb{\lrav{X_i}^p}. 
-\end{equation*} 
-</​WRAP>​ 
-===== Proof ===== 
- 
-Set $S_n \eqdef \sum_{i=1}^n X_i$. Let $x > 0$. We first establish an upper-bound for $\PP \lr{\lrav{S_n} \geq x}$. 
- 
-Let $y > 0$ and define for all $i \in [1;n]$, $Z_i \eqdef X_i 1_{X_i < y}$ and $T_n \eqdef \sum_{i=1}^n Z_i$. Then, 
-\begin{equation} \label{eq:​s_n_t_n} 
-    \PP \lr{S_n \geq x} \leq \PP \lr{T_n \geq x} + \PP \lr{S_n \neq T_n} \leq \PP \lr{T_n \geq x} + \sum_{i=1}^n \PP \lr{X_i \geq y}. 
-\end{equation} 
-Let $h > 0$. The Chernoff bound and the independence of the $\lr{Z_i}_{1\leq i \leq n}$ by independence of the $\lr{X_i}_{1\leq i \leq n}$ both provide 
-\begin{equation} \label{eq:​t_n_only} 
-    \PP \lr{T_n \geq x} \leq e^{-hx} \PE\lrb{e^{h T_n}} = e^{-hx} \prod_{i=1}^n \PE\lrb{e^{h Z_i}}. 
-\end{equation} 
-Using the Taylor formula with the exponential function yields that the function defined on $\rset$ by $s \mapsto \frac {e^s-1-s} {s^2} = \frac 1 {s^2} \int_0^s (u-s)e^u \rmd u= \int_0^1 (u-1)e^{su} \rmd u$ is increasing, and together with $Z_i \leq y$ for all $i \in [1;n]$, we deduce 
-\begin{equation*} 
-    e^{h Z_i} \leq 1 + h Z_i + Z_i^2 \frac {e^{hy}-1-y} {y^2}. 
-\end{equation*} 
-The fact that $y>0$ implies $Z_i \leq X_i$ and thus $\PE \lrb{Z_i} \leq \PE \lrb{X_i} = 0$. Combining with $\PE \lrb{Z_i^2} = \PE \lrb{X_i^2 1_{X_i < y}} \leq \PE \lrb{X_i^2}$ yields for all $i \in [1;n]$, 
-\begin{equation*} 
-    \PE \lrb{e^{h Z_i}} \leq 1 + \PE \lrb{X_i^2} \frac {e^{hy}-1-y} {y^2}. 
-\end{equation*} 
-Together with \eqref{eq:​s_n_t_n} and \eqref{eq:​t_n_only} this provides 
-\begin{equation} \label{eq:​s_n_step_1} 
-    \PP \lr{S_n \geq x} \leq \sum_{i=1}^n \PP \lr{X_i \geq y} + \exp \lrb{-hx + B_n \frac {e^{hy}-1-y} {y^2}}, 
-\end{equation} 
-where $B_n \eqdef \sum_{i=1}^n \PE \lrb{X_i^2} < \infty$. Note that $B_n = 0$ implies that the $\lr{X_i}_{1 \leq i \leq n}$ are all equal to zero a.s., a situation where the inequality is trivially true, and we can thus assume $B_n > 0$. 
-The argument of the exponential in \eqref{eq:​s_n_step_1} is then minimized in $h$ at $h_{\min} \eqdef \frac 1 y \log \lr{1 + \frac {xy} {B_n}}$, with 
-\begin{equation*} 
-    -h_{\min}x + B_n \frac {e^{h_{\min}y}-1-y} {y^2} = - \frac x y \log \lr{1 + \frac {xy} {B_n}} + \frac {B_n} {y^2} \lrb{\frac {xy} {B_n} \underbrace{- \log \lr{1 + \frac {xy} {B_n}}}_{\leq 0}} \leq \frac x y - \frac x y \log \lr{1 + \frac {xy} {B_n}}. 
-\end{equation*} 
- 
-<​hidden>​ 
-The function defined on $\rset_+^*$ by $h \mapsto -hx + B_n \frac {e^{hy}-1-y} {y^2}$ is continuous, diverges to infinity when $h \rightarrow +\infty$, and its derivative $h \mapsto -x + \frac {B_n} y \lr{e^{hy}-1}$ has a unique zero $h_{\min}$ on $\rset_+^*$ defined by $e^{h_{\min}y}-1 = \frac {xy} {B_n}$. 
-</​hidden>​ 
- 
-With $y = \frac x r$ where $r > 0$, combining with \eqref{eq:​s_n_step_1} yields 
-\begin{equation*} 
-    \PP \lr{S_n \geq x} \leq \sum_{i=1}^n \PP \lr{X_i \geq \frac x r} + e^r \lr{1 + \frac {x^2} {r B_n}}^{-r}. 
-\end{equation*} 
-Considering $\lr{-X_i}_{1 \leq i \leq n}$ provides a similar inequality for $-S_n$, and using the fact that $x > 0$ we deduce 
-\begin{equation*} 
-    \PP \lr{\lrav{S_n} \geq x} = \PP \lr{S_n \geq x} + \PP \lr{-S_n \geq x} \leq \sum_{i=1}^n \PP \lr{\lrav{X_i} \geq \frac x r}+ 2 e^r \lr{1 + \frac {x^2} {r B_n}}^{-r}. 
-\end{equation*} 
- 
- 
-Using the [[rayan:​11_marcinkiewicz_zygmund#​g_lemma|$g$-lemma]] with $g \colon x \mapsto x^p$ we deduce 
-\begin{align*} 
-    \PE \lrb{\lrav{S_n}^p} = p \int_{\rset_+} x^{p-1} \PP\lr{\lrav{S_n} \geq x} \rmd x &\leq \sum_{i=1}^n p \int_{\rset_+} x^{p-1} \PP\lr{\lrav{X_i} \geq x} \rmd x + 2p e^r \int_{\rset_+} \frac {x^{p-1}} {\lr{1 + \frac {x^2} {r B_n}}^r} \rmd x \\ 
-    &= r^p \sum_{i=1}^n \PE \lrb{\lrav{X_i}^p} + 2p e^r B_n^{p/2} \int_0^{+\infty} \frac {u^{p/2-1}} {\lr{1+\frac u r}^r} \rmd u \quad \in \rset_+ \cup \lrc{+\infty},​ 
-\end{align*} 
-with the change of variables $u = \frac {x^2} {B_n}$. The integral is finite iff $r>p/2$, and we can choose $r = p$ to deduce the Rosenthal inequality: 
-\begin{equation} \label{eq:​rosenthal} 
-    \PE \lrb{\lrav{S_n}^p} \leq c_p \lr{\sum_{i=1}^n \PE \lrb{\lrav{X_i}^p} + \lr{\sum_{i=1}^n \PE \lrb{X_i^2}}^{p/​2}},​ 
-\end{equation} 
-where $c_p \eqdef \max(p^p, 2p e^p \int_{\rset_+} \frac {u^{p/2-1}} {\lr{1+\frac u p}^p} \rmd u)$ only depends on $p$. Finally, by Jensen inequality as $p \geq 2$, and by convexity, ​ 
-\begin{equation*} 
-    \lr{\frac 1 n \sum_{i=1}^n \PE \lrb{X_i^2}}^{p/​2} = \PE \lrb{\frac 1 n \sum_{i=1}^n X_i^2}^{p/​2} \leq \PE \lrb{\lr{\frac 1 n \sum_{i=1}^n X_i^2}^{p/​2}} \leq \PE \lrb{\frac 1 n \sum_{i=1}^n \lrav{X_i}^p}. 
-\end{equation*} 
- 
-which together with the Rosenthal inequality \eqref{eq:​rosenthal} yields the Marcinkiewicz–Zygmund inequality: 
-\begin{equation*} 
-    \PE \lrb{\lrav{\sum_{i=1}^n X_i}^p} \leq C_p \eqsp n^{p/2-1} \sum_{i=1}^n \PE \lrb{\lrav{X_i}^p},​ 
-\end{equation*} 
-where $C_p \eqdef 2 c_p$. 
- 
-{{anchor:​multi_mz:​}} 
-====== Generalized Marcinkiewicz–Zygmund inequality ====== 
- 
-<WRAP center round box 80%> 
- 
-Let $d \in \nset^*$ and $\norm{\cdot}$ a norm on $\rset^d$. Let $n \in \nset^*$ and $\lr{X_i}_{1 \leq i \leq n}$ independent random variables of $L^p(\rset^d)$ with $2 \leq p < \infty$. Then, 
-\begin{equation*} 
-    \mathbb{E}\lrb{\norm{\sum_{i=1}^n \lr{X_i-\mathbb{E}\lrb{X_i}} }^p} \leq C_{p, \norm{}} \times n^{p/2-1} \times \sum_{i=1}^n \mathbb{E}\lrb{\norm{X_i}^p} , 
-\end{equation*} 
-where $C_{p, \norm{}}$ is a constant depending only on $p$ and on the choice of the norm $\norm{\cdot}$. 
- 
-</​WRAP>​ 
- 
-<​hidden>​ 
-First, notice that the result only needs to be proved for centered random variables. Indeed, by convexity, for any random variable $X$, 
-\begin{equation*} 
-    \mathbb{E}\lrb{\norm{X-\mathbb{E}\lrb{X}}^p} 
-    \leq 2^{p-1} \mathbb{E}\lrb{\norm{X}^p + \norm{\mathbb{E}\lrb{X}}^p} 
-    \leq 2^p \mathbb{E}\lrb{\norm{X}^p} . 
-\end{equation*} 
-Moreover, by equivalence of norms in finite dimension, the result only needs to be proved for the norm $\norm{\cdot}_p$ on $\rset^d$. Using the [[rayan:​11_marcinkiewicz_zygmund#​mz|Marcinkiewicz–Zygmund inequality]] in dimension 1 provides 
-\begin{align*} 
-    \mathbb{E}\lrb{\norm{\sum_{i=1}^n X_i }_p^p} &= \mathbb{E}\lrb{\sum_{j=1}^d \lrav{ \sum_{i=1}^n X_i(j) }^p} \\ 
-    &= \sum_{j=1}^d \mathbb{E}\lrb{\lrav{ \sum_{i=1}^n X_i(j) }^p} \\ 
-    &\leq \sum_{j=1}^d C_p \times n^{p/2-1} \times \sum_{i=1}^n \mathbb{E}\lrb{\lrav{X_i(j)}^p} \\ 
-    &= C_p \times n^{p/2-1} \times ​ \sum_{i=1}^n \mathbb{E}\lrb{\sum_{j=1}^d \lrav{X_i(j)}^p} \\ 
-    &= C_p \times n^{p/2-1} \times ​ \sum_{i=1}^n \mathbb{E}\lrb{\norm{X_i}_p^p} \eqsp. 
-\end{align*} 
-</​hidden>​ 
- 
-====== Some notation ====== 
-Reminder of the notation introduced in [[https://​projecteuclid.org/​download/​pdf_1/​euclid.aos/​1059655912|Fort,​ Moulines (2003)]] p.12. 
- 
-Let $p > 0$, $\lr{X_n}_{n \in \nset}$ a sequence of random variables and $\lr{\alpha_n}_{n \in \nset}$ a sequence of nonzero real numbers. We write $X_n = O_{L^p}(\alpha_n)$ if $\lr{\alpha_n^{-1} X_n}_{n \in \nset}$ is bounded in $L^p$. 
- 
-{{anchor:​o_lemma:​}} 
-====== $O$-lemma ====== 
- 
-Let $p > 0$ and $\lr{X_n}_{n \in \nset}$ a sequence of random variables such that $X_n = O_{L^p}(\alpha_n)$ with $\sum_{n=0}^{\infty} \alpha_n^p < \infty$. Then, 
-\begin{equation*} 
-    \lr{X_n}_{n \in \nset} \overset{a.s}{\rightarrow} 0. 
-\end{equation*} 
- 
-<​hidden>​ 
-By assumption, there exists $C \in \rset_+^*$ such that for all $n \in \nset$, $\alpha_n^{-1} \norm{X_n}_{L^p} \leq C$. 
- 
-Let $\epsilon > 0$. By Markov inequality, for all $n \in \nset$, 
-\begin{equation*} 
-    \mathbb{P}\lr{\norm{X_n }_p \geq \epsilon} \leq \frac {\PE\lrb{\norm{X_n}_p^p}} {\epsilon^p} 
-    = \frac {\norm{X_n}_{L_p}^p} {\epsilon^p} 
-    \leq \frac {C^p} {\epsilon^p} \alpha_n^p, 
-\end{equation*} 
-hence 
-\begin{equation*} 
-    \sum_{n=0}^{\infty} \mathbb{P}\lr{\norm{X_n }_p \geq \epsilon} \leq \frac {C^p} {\epsilon^p} \sum_{n=0}^{\infty} \alpha_n^p < \infty . 
-\end{equation*} 
-By Borel-Cantelli lemma we deduce that almost surely, $\norm{X_n }_p < \epsilon$ for sufficiently large $n$. 
-That being true for all $\epsilon > 0$, it is true for all $\epsilon = \frac 1 k$ with $k \in \nset^*$, and from a countable intersection of almost sure events $\lr{X_n}_{n \in \nset} \overset{a.s}{\rightarrow} 0$. 
-</​hidden>​ 
- 
-{{anchor:​mz_slln:​}} 
-====== Triangular strong law of large numbers ====== 
- 
-<WRAP center round box 80%> 
-Let $d \in \nset^*$ and $\lr{X_{n,​i}}_{1 \leq i \leq m_n, n\in\nset}$ i.i.d. random variables of $\rset^d$ with $\lr{m_n}_{n \in \nset} \in {\nset^*}^{\nset}$. 
-Assume the existence of $p \geq 2$ such that $X_{1,1} \in L^p$ and $\sum_{i=1}^{\infty} m_n^{-p/2} < \infty$. Then, 
-\begin{equation*} 
-    \frac 1 {m_n} \sum_{i=1}^{m_n} X_{n,i} \overset{a.s}{\rightarrow} \PE\lr{X_{1,​1}}. 
-\end{equation*} 
-</​WRAP>​ 
- 
-<​hidden>​ 
-The $\lr{X_{n,​i}}_{1 \leq i \leq m_n, n\in\nset}$ being i.i.d. and in $L^p(\rset^d)$,​ the [[rayan:​11_marcinkiewicz_zygmund#​multi_mz|generalized Marcinkiewicz–Zygmund inequality]] yields 
-\begin{equation*} 
-    \frac 1 {m_n} \sum_{i=1}^{m_n} X_{n,i} - \PE\lr{X_{1,​1}} = O_{L^p}\lr{m_n^{-1/​2}}. 
-\end{equation*} 
-As $\sum_{i=1}^{\infty} m_n^{-p/2} < \infty$ by assumption, the [[rayan:​11_marcinkiewicz_zygmund#​o_lemma|$O$-lemma]] concludes the proof. 
-</​hidden>​ 
- 
-**Remark:** The assumptions of the theorem hold as soon as $m_n = n$ for all $n \in \nset^*$ and $X_{1,1} \in L^p$ with $p>2$. 
- 
-**Remark:** For $p=2$, look at Theorem 2.19 of Hall, Heyde {{ :​rayan:​hallheyde.pdf |Martingal Limit Theory and its application}}. 
- 
- 
-{{anchor:​compact_slln:​}} 
-====== Compact strong law of large numbers ====== 
- 
-Let $\Theta$ be a compact subset of $\rset^d$ with $d \in \nset^*$, $Z$ a measurable space, $\zeta$ a random variable taking its values on $Z$, and $L$ a measurable function defined on $\Theta \times Z$. 
-Define on $\Theta$ the function $\mathcal{L} \colon \theta \mapsto \mathbb{E}\lrb{L(\theta,​ \zeta)}$, and for all $\theta \in \Theta$ and $n \in \nset$, the Monte-Carlo average 
-\begin{equation*} 
-    \hat{\mathcal{L}}^n(\theta) \eqdef \frac 1 {m_n} \sum_{i=1}^{m_n} L(\theta, \zeta_{n,​i}),​ 
-\end{equation*} 
-where $\lr{m_n} \in {\nset^*}^{\nset}$ and $\lr{\zeta_{n,​i}}_{1 \leq i \leq m_n}$ are i.i.d. random variables with $\zeta_{n,​1} \sim \zeta$. ​ 
- 
-Assume that: 
-  - $\mathcal{L}$ is continuous on $\Theta$, 
-  - there exists a measurable function $\Gamma \colon Z \rightarrow \rset_+$ such that a.s., for all $\theta \in \Theta$, $|L(\theta, \zeta)| \leq \Gamma(\zeta) \in L^p$ with $p \geq 2$, 
-  - $\sum_{i=1}^{\infty} m_n^{-p/2} < \infty$. 
-Then, 
-\begin{equation*} 
-    \underset{\Theta}{\sup} \lrav{\mathcal{L} - \hat{\mathcal{L}}^n} \overset{a.s.}{\rightarrow} 0. 
-\end{equation*} 
- 
- 
- 
-<​hidden>​ 
-Let $\delta > 0$ and $\theta_0 \in \Theta$. Write 
-\begin{equation*} 
-    \mathcal{L} - \hat{\mathcal{L}}^n = \mathcal{L} - \mathcal{L} \lr{\theta_0} + \mathcal{L} \lr{\theta_0} - \hat{\mathcal{L}}^n. 
-\end{equation*} 
-By continuity of $\mathcal{L}$ there exists $\epsilon_1 > 0$ such that $\underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_1}}{\sup} \lr{\mathcal{L} - \mathcal{L} \lr{\theta_0}} \leq \frac {\delta} 3$. For all $\epsilon > 0$, 
-\begin{align*} 
-    \underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\sup} \lr{\mathcal{L} \lr{\theta_0} - \hat{\mathcal{L}}^n} 
-    &= \PE\lrb{L\lr{\theta_0,​ \zeta}} - \underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} \frac 1 {m_n} \sum_{i=1}^{m_n} L\lr{\theta,​ \zeta_{n,​i}} \\ 
-    &\leq \PE\lrb{L\lr{\theta_0,​ \zeta}} - \frac 1 {m_n} \sum_{i=1}^{m_n} \underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta_{n,​i}} \\ 
-    &= \PE\lrb{L\lr{\theta_0,​ \zeta}} - \PE\lrb{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta}} + \PE\lrb{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta}} - \frac 1 {m_n} \sum_{i=1}^{m_n} \underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta_{n,​i}}. 
-\end{align*} 
-By the monotone convergence theorem, there exists $\epsilon_2 \in (0; \epsilon_1)$ such that 
-\begin{equation*} 
-    \PE\lrb{L\lr{\theta_0,​ \zeta}} - \PE\lrb{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\inf} L\lr{\theta,​ \zeta}} \leq \frac {\delta} 3. 
-\end{equation*} 
-We easily prove that a.s., $\lrav{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\inf} L\lr{\theta,​ \zeta}} \leq \Gamma(\zeta) \in L^p$. Together with assumption 3. this allows us to apply the [[rayan:​11_marcinkiewicz_zygmund#​mz_slln|triangular strong law of large numbers]] to $\lr{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon}}{\inf} L\lr{\theta,​ \zeta_{n,​i}}}_{1\leq i \leq m_n, n\in\nset}$,​ which provides a.s. the existence of $n_0 \in \nset$ such that for all $n \geq n_0$, 
-\begin{equation*} 
-    \PE\lrb{\underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\inf} L\lr{\theta,​ \zeta}} - \frac 1 {m_n} \sum_{i=1}^{m_n} \underset{\theta \in \Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\inf} L\lr{\theta,​ \zeta_{n,​i}} \leq \frac {\delta} 3. 
-\end{equation*} 
-Together with the definitions of $\epsilon_1$ and $\epsilon_2$,​ this yields the existence a.s. of $n_0 \in \nset$ such that for all $n_0 \geq n$,  
-\begin{equation*} 
-    \underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\sup} \lr{\mathcal{L} - \hat{\mathcal{L}}^n} \leq \underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_1}}{\sup} \lr{\mathcal{L} - \mathcal{L}(\theta_0)} + \underset{\Theta \cap \mathbf{B}\lr{\theta_0,​ \epsilon_2}}{\sup} \lr{\mathcal{L}(\theta_0) - \hat{\mathcal{L}}^n} \leq \delta. 
-\end{equation*} 
-By compacity of $\Theta \subset \underset{\theta \in \Theta}{\cup} \mathbf{B}\lr{\theta,​ \epsilon_2(\theta)}$,​ we can extract a finite subcover $\underset{1 \leq i \leq I}{\cup} \mathbf{B}\lr{\theta_i,​ \epsilon_2(\theta_i)}$ of $\Theta$ with $I \in \nset$. 
-By finite intersection of almost sure events, there exists a.s. $n_0 \eqdef \max\lr{n_0(\theta_1),​ \dots, n_0(\theta_I)}$ such that for all $n \geq n_0$, 
-\begin{equation*} 
-    \underset{\Theta}{\sup} \lr{\mathcal{L} - \hat{\mathcal{L}}^n} = \underset{1 \leq i \leq I}{\max} \underset{\Theta \cap \mathbf{B}\lr{\theta_i,​ \epsilon_2(\theta_i)}}{\sup} \lr{\mathcal{L} - \hat{\mathcal{L}}^n} \leq \delta. 
-\end{equation*} 
-That being true for all $\delta = \frac 1 k$ with $k \in \nset^*$, by countable intersection of almost sure events, $\max\lr{0, \eqsp \underset{\Theta}{\sup} \lr{\mathcal{L} - \hat{\mathcal{L}}^n}} \overset{a.s.}{\rightarrow} 0$. The same reasoning with $L = - L$ provides $\underset{\Theta}{\sup} \lrav{\mathcal{L} - \hat{\mathcal{L}}^n} \overset{a.s.}{\rightarrow} 0$. 
-</​hidden>​ 
- 
-**Remark.** If $L$ is continuous with respect to the first variable $\theta$, by Lebesgue'​s dominated convergence theorem under assumption 2. the function $\mathcal{L}$ is continuous (i.e. assumption 1. is verified). 
- 
  
world/marcinkiewicz.txt · Last modified: 2022/03/16 07:40 (external edit)