Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:kolmogorov

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:kolmogorov [2023/11/12 22:08]
rdouc [Backward Kolmogorov equation]
world:kolmogorov [2023/11/15 00:23] (current)
rdouc [Forward Kolmogorov equation]
Line 7: Line 7:
  
 $$ $$
-dX_s = \mu(X_s,s)ds + \sigma(X_s,s)dW_s+\rmd X_s = \mu_s(X_s)\rmd s + \sigma_s(X_s)\rmd W_s
 $$ $$
  
 We provide only the ideas of the proofs. Additional assumptions are necessary to justify the use of all the tools. We provide only the ideas of the proofs. Additional assumptions are necessary to justify the use of all the tools.
  
-Let $y\mapsto \trans{t}{x}{y}be the density of $X_t$ starting from $X_0=x$. Since $(X_t)$ is a homogeneous Markov process, ​we also have that $y\mapsto \trans{t}{x}{y}$ is the density of $X_{s+t}knowing ​$X_s$ at $X_{s}=x$. +In what follows, we consider ​$s\leq t$ and we let $y\mapsto \condtrans{t|s}{y}{x}$ be the density of $X_tstarting from $X_s=x$. ​
  
 ===== Forward Kolmogorov equation ===== ===== Forward Kolmogorov equation =====
Line 20: Line 19:
 The Forward Kolmogorov equation writes The Forward Kolmogorov equation writes
 $$ $$
-\partial_t \trans{t}{x}{y} = - \partial_y \lrb{{\mu(y,t) \trans{t}{x}{y}}} +\frac 1 2 \partial^2_{yy} \lrb{\sigma^2(y,t) \trans{t}{x}{y}}+\partial_t \condtrans{t|s}{y}{x} = - \partial_y \lrb{{\mu_t(y) \condtrans{t|s}{y}{x}}} +\frac 1 2 \partial^2_{yy} \lrb{\sigma_t^2(y) \condtrans{t|s}{y}{x}}
 $$ $$
  
Line 26: Line 25:
  
  
-Set $ Y_s=h(X_s) $ where $h$ is for example ​$C^2$ with bounded ​second derivatives. By Itô's Formula, ​+Set $ Y_u=h(X_u) $ where $h$ is $C^2$ with bounded ​support. By Itô's Formula, ​
 $$ $$
-\rmd Y_s=h'(X_s) \rmd X_s + \frac 1 2 h''​(X_s) \rmd\cro{X}_s=\lrb{h'​(X_s) \mu(X_s,s)+\frac 1 2 h''​(X_s) \sigma^2(X_s,s)} \rmd + h'(X_s) \sigma(X_s,s) \rmd W_s+\rmd Y_u=h'(X_u) \rmd X_u + \frac 1 2 h''​(X_u) \rmd\cro{X}_u=\lrb{h'​(X_u) \mu_u(X_u)+\frac 1 2 h''​(X_u) \sigma_u^2(X_u)} \rmd + h'(X_u) \sigma_u(X_u) \rmd W_u
 $$ $$
 Hence, ​ Hence, ​
 \begin{align*} \begin{align*}
-    \int_\rset h(y) \trans{t}{x}{y} \rmd y - h(x) &= \PE_x[h(X_t)]-h(x) ​  \\  +    \int_\rset h(y) \condtrans{t|s}{y}{x} \rmd y - h(x) &= \PE[h(X_t)|X_s]|_{X_s=x}-h(x)   \\  
-    & =\PE_x\lrb{\int_0^t h'(X_s) \mu(X_s,s)+\frac 1 2 h''​(X_s) \sigma^2(X_s,s) \rmd } \\  +    & =\PE_x\lrb{\int_s^t h'(X_u) \mu_u(X_u)+\frac 1 2 h''​(X_u) \sigma_u^2(X_u) \rmd } \\  
-    & =\int_0^t  \lr{\int_\rset h'(y) \mu(y,s) \trans{s}{x}{y}\rmd y +\frac 1 2 \int_\rset h''​(y) \sigma^2(y,s) \trans{s}{x}{y} \rmd y}\rmd ​ \\  +    & =\int_s^t  \lr{\int_\rset h'(y) \mu_u(y) \condtrans{u|s}{y}{x}\rmd y +\frac 1 2 \int_\rset h''​(y) \sigma^2_u(y) \condtrans{u|s}{y}{x} \rmd y}\rmd ​ \\  
-    & =  \int_0^t  \lr{-\int_\rset h(y) \partial_y \lrb{{\mu(y,s) \trans{s}{x}{y}}}\rmd y +\frac 1 2 \int_\rset h(y) \partial^2_{yy} \lrb{\sigma^2(y,s) \trans{s}{x}{y}} \rmd y}\rmd ​+    & =  \int_s^t  \lr{-\int_\rset h(y) \partial_y \lrb{{\mu_u(y) \condtrans{u|s}{y}{x}}}\rmd y +\frac 1 2 \int_\rset h(y) \partial^2_{yy} \lrb{\sigma^2_u(y) \condtrans{u|s}{y}{x}} \rmd y}\rmd ​
 \end{align*} \end{align*}
 where the last equality is obtained from integration by parts. Differentiating both sides of the equation wrt $t$ yields where the last equality is obtained from integration by parts. Differentiating both sides of the equation wrt $t$ yields
 $$ $$
-\partial_t \trans{t}{x}{y} = - \partial_y \lrb{{\mu(y,t) \trans{t}{x}{y}}} +\frac 1 2 \partial^2_{yy} \lrb{\sigma^2(y,t) \trans{t}{x}{y}}+\partial_t \condtrans{t|s}{y}{x} = - \partial_y \lrb{{\mu_t(y) \condtrans{t|s}{y}{x}}} +\frac 1 2 \partial^2_{yy} \lrb{\sigma_t^2(y) \condtrans{t|s}{y}{x}}
 $$ $$
  
Line 47: Line 46:
 The Backward Kolmogorov equation writes The Backward Kolmogorov equation writes
 $$ $$
--\partial_s \trans{t-s}{x}{y}= \mu(x,s) \partial_x \trans{t-s}{x}{s} + \frac 1 2 \sigma^2(x,s) \partial^2_{xx} \trans{t-s}{x}{s}=0+-\partial_s \condtrans{t|s}{y}{x}= \mu_s(x) \partial_x \condtrans{t|s}{y}{x} + \frac 1 2 \sigma^2_s(x) \partial^2_{xx} \condtrans{t|s}{y}{x}
 $$ $$
  
Line 54: Line 53:
 Recall that  Recall that 
 $$ $$
-dX_s=\mu(X_s,s) \rmd +  \sigma(X_s,s) \rmd W_s+\rmd X_v=\mu_v(X_v) \rmd +  \sigma_v(X_v) \rmd W_v
 $$ $$
-Now, define for $ s\leq t $, $u(x,s)=\left. \PE[h(X_t)|X_s] \right|_{X_s=x}=\int h(y) \trans{t-s}{x}{y} \rmd y$. +Now, define for $ s\leq t $, $u_s(x)=\left. \PE[h(X_t)|X_s] \right|_{X_s=x}=\int h(y) \condtrans{t|s}{y}{x} \rmd y$. 
  
-Set $Y_v=u(X_v,v)$. By Itô's Formula, ​+Set $Y_v=u_v(X_v)$. By Itô's Formula, ​
 \begin{align*} \begin{align*}
-    \rmd Y_v&​=\partial_s ​u(X_v,v) \rmd s + \partial_x ​u(X_v,v) \rmd X_v + \frac 1 2 \partial^2_{xx}u(X_v,v) \rmd\cro{X}_v \\  +    \rmd Y_v&​=\partial_s ​u_v(X_v) \rmd s + \partial_x ​u_v(X_v) \rmd X_v + \frac 1 2 \partial^2_{xx}u_v(X_v) \rmd\cro{X}_v \\  
-    & = \lrb{\partial_s ​+ \mu \partial_x ​ + \frac 1 2 \sigma^2 \partial^2_{xx}u}(X_v,v) \rmd s + \lrb{\sigma \partial_{x}u} (X_v,v) \rmd W_v +    & = \lrb{\partial_s ​u_v + \mu_v \partial_x ​u_v  + \frac 1 2 \sigma_v^2 \partial^2_{xx}u_v}(X_v) \rmd s + \lrb{\sigma_v ​\partial_{x}u_v} (X_v) \rmd W_v 
 \end{align*} \end{align*}
  
 Note that $Y_t=h(X_t)$ and $Y_s=\left. \PE[h(X_t)|X_s]\right|_{X_s=x}$. Hence, ​ Note that $Y_t=h(X_t)$ and $Y_s=\left. \PE[h(X_t)|X_s]\right|_{X_s=x}$. Hence, ​
 \begin{align*} \begin{align*}
-    0= \PE[Y_t-Y_s| X_s]|_{X_s=x}= \left. \PE \lrb{\left. \int_s^t \lrb{\partial_s ​+ \mu \partial_x ​ + \frac 1 2 \sigma^2 \partial^2_{xx}u}(X_v,v) \rmd v \right| X_s} \right|_{X_s=x}+    0= \PE[Y_t-Y_s| X_s]|_{X_s=x}= \left. \PE \lrb{\left. \int_s^t \lrb{\partial_s ​u_v + \mu_v \partial_x ​u_v  + \frac 1 2 \sigma_v^2 \partial^2_{xx}u_v}(X_v) \rmd v \right| X_s} \right|_{X_s=x}
 \end{align*} \end{align*}
 Dividing by $t-s$ and letting $t\to s$, we get  Dividing by $t-s$ and letting $t\to s$, we get 
 $$ $$
-\lr{\partial_s ​+ \mu \partial_x ​ + \frac 1 2 \sigma^2 \partial^2_{xx}u}(x,s)=0+\lr{\partial_s ​u_s + \mu_s \partial_x ​u_s  + \frac 1 2 \sigma_s^2 \partial^2_{xx}u_s}(x)=0
 $$ $$
-Since $u(x,s)=\int h(y) \trans{t-s}{x}{y} \rmd y$, we finally obtain+Since $u_s(x)=\int h(y) \condtrans{t|s}{y}{x} \rmd y$, we finally obtain
 $$ $$
-\partial_s \trans{t-s}{x}{y}+ \mu(x,s) \partial_x \trans{t-s}{x}{s} + \frac 1 2 \sigma^2(x,s) \partial^2_{xx} \trans{t-s}{x}{s}=0+\partial_s \condtrans{t|s}{y}{x}+ \mu_s(x) \partial_x \condtrans{t|s}{y}{x} + \frac 1 2 \sigma^2_s(x) \partial^2_{xx} \condtrans{t|s}{y}{x}=0
 $$ $$
 which completes the proof. ​ which completes the proof. ​
world/kolmogorov.1699823338.txt.gz · Last modified: 2023/11/12 22:08 by rdouc