Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:knn

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:knn [2023/11/05 15:10]
rdouc [Statement]
world:knn [2023/11/05 18:04] (current)
rdouc [Second proof]
Line 7: Line 7:
 $(\Omega,​\mcf,​ \PP)$. ​ $(\Omega,​\mcf,​ \PP)$. ​
  
-For any $k \in  [1:​n]$, ​define ​$X^k_{(n)}$ the $k$-th nearest neighboor of+For any $k \in  [1:​n]$, ​denote by $X^k_{(n)}$ the $k$-th nearest neighboor of
 $X_0$ among the set $\set{X_k}{k \in [1:n]}$, that is we have the properties ​ $X_0$ among the set $\set{X_k}{k \in [1:n]}$, that is we have the properties ​
   * $\|X_0-X^1_{(n)}\| \leq \|X_0-X^2_{(n)}\| \leq \ldots \leq \|X_0-X^n_{(n)}\|$. ​   * $\|X_0-X^1_{(n)}\| \leq \|X_0-X^2_{(n)}\| \leq \ldots \leq \|X_0-X^n_{(n)}\|$. ​
Line 15: Line 15:
 <WRAP center round tip 90%> <WRAP center round tip 90%>
 **__Proposition__** **__Proposition__**
-We have $\PP$-a.s., ​+ 
 +For any $k \in \nset$, we have $\PP$-a.s., ​
 $$ $$
 \lim_{n \to \infty} X^k_{(n)}=X_0 ​ \lim_{n \to \infty} X^k_{(n)}=X_0 ​
Line 23: Line 24:
 ===== Proof  ===== ===== Proof  =====
  
-Note that since $n \mapsto \|X_0-X^k_{(n)}\|$ is non-increasing,​ $\lim_n X^k_{(n)}=X_0$ means that for any $\epsilon \in \bbQ_+^\star$, the open ball $\ball{X_0,​\epsilon}$ contains at least $k$ points among $(X_n)_{n \geq 1}$. Conversely, if $\lim_n X^k_{(n)}=X_0$ does not hold, it means that for some $\epsilon \in \bbQ_+^\star$, the ball $\ball{X_0,​\epsilon}$ contains at most $k-1$ points among $(X_n)_{n \geq 1}$. This in turn implies that $\| X_0- X_{m} \| \geq \epsilon$ for any  sufficiently large $m$. Hence, ​+Note that since $n \mapsto \|X_0-X^k_{(n)}\|$ is non-increasing,​ $\lim_n X^k_{(n)}=X_0$ means that for any $\epsilon \in \bbQ_+^*$, the open ball $\ball{X_0,​\epsilon}$ contains at least $k$ points among $(X_n)_{n \geq 1}$. Conversely, if $\lim_n X^k_{(n)}=X_0$ does not hold, it means that for some $\epsilon \in \bbQ_+^*$, the ball $\ball{X_0,​\epsilon}$ contains at most $k-1$ points among $(X_n)_{n \geq 1}$. This in turn implies that $\| X_0- X_{m} \| \geq \epsilon$ for any  sufficiently large $m$. Hence, ​
 $$ $$
-\{\lim_{n \to \infty} X^k_{(n)}=X_0\}^c \subset ​ \cup_{(\epsilon,​n) \in \bbQ^\star_+ \times \nset^*}A_{\epsilon,​n} \quad \mbox{where} \quad A_{\epsilon,​n}=\{\forall m \geq n, \ \| X_0- X_{m} \| \geq \epsilon\}+\{\lim_{n \to \infty} X^k_{(n)}=X_0\}^c \subset ​ \cup_{(\epsilon,​n) \in \bbQ^*_+ \times \nset^*}A_{\epsilon,​n} \quad \mbox{where} \quad A_{\epsilon,​n}=\{\forall m \geq n, \ \| X_0- X_{m} \| \geq \epsilon\}
 $$ $$
 From this inclusion property, in order to show that $\PP$-a.s., $\lim_{n \to \infty} X^k_{(n)}=X_0$ and hence  From this inclusion property, in order to show that $\PP$-a.s., $\lim_{n \to \infty} X^k_{(n)}=X_0$ and hence 
- ​$\PP\lr{\{\lim_{n \to \infty} X^k_{(n)}=X_0\}^c}=0$,​ we only need to show that $\PP(A_{\epsilon,​n})=0$ for any $ (\epsilon,​n) \in \bbQ^\star_+ \times \nset^* $. Using that the $(X_m)_{m \geq 0}$ are iid, + ​$\PP\lr{\{\lim_{n \to \infty} X^k_{(n)}=X_0\}^c}=0$,​ we only need to show that $\PP(A_{\epsilon,​n})=0$ for any $ (\epsilon,​n) \in \bbQ^*_+ \times \nset^* $. Using that the $(X_m)_{m \geq 0}$ are iid, 
 \begin{align*} \begin{align*}
     \PP(A_{\epsilon,​n})&​=\PP(A_{\epsilon,​1})=\PP(\cap_{m=1}^\infty \{\| X_0- X_{m} \| \geq \epsilon\})=\PE\lrb{\lim_{\ell \to \infty} \PE\lrb{\left. \prod_{m=1}^\ell\indiacc{\| X_0- X_{m} \| \geq \epsilon} \right| X_0 }}= \PE\lrb{\lim_{\ell \to \infty} h(X_0)^\ell}     \PP(A_{\epsilon,​n})&​=\PP(A_{\epsilon,​1})=\PP(\cap_{m=1}^\infty \{\| X_0- X_{m} \| \geq \epsilon\})=\PE\lrb{\lim_{\ell \to \infty} \PE\lrb{\left. \prod_{m=1}^\ell\indiacc{\| X_0- X_{m} \| \geq \epsilon} \right| X_0 }}= \PE\lrb{\lim_{\ell \to \infty} h(X_0)^\ell}
Line 40: Line 41:
 Note that on $\{h(X_0)=1\}\cap \{X_0 \in A_n\} $,  Note that on $\{h(X_0)=1\}\cap \{X_0 \in A_n\} $, 
 \begin{align*} \begin{align*}
-    1&=h(X_0)=\PP\lr{ \| X_0- X_{1} \| \geq \epsilon | X_0 } \leq \PP\lr{ \| X_0-a_n\| + \| a_n-X_{1} \| \geq \epsilon | X_0 }  \\ +    1=h(X_0)=\PP\lr{ \| X_0- X_{1} \| \geq \epsilon | X_0 } &\leq \PP\lr{ \| X_0-a_n\| + \| a_n-X_{1} \| \geq \epsilon | X_0 }  \\ 
     &​\leq ​ \PP\lr{ \epsilon/2 + \| a_n-X_{1} \| \geq \epsilon | X_0 }= \PP\lr{\| a_n-X_{1} \|\geq \epsilon/2 | X_0 }\\      &​\leq ​ \PP\lr{ \epsilon/2 + \| a_n-X_{1} \| \geq \epsilon | X_0 }= \PP\lr{\| a_n-X_{1} \|\geq \epsilon/2 | X_0 }\\ 
     &​=\PP\lr{\| a_n-X_{1} \| \geq \epsilon/2 }=\PP(X_1 \notin A_n)=\PP(X_0 \notin A_n)        &​=\PP\lr{\| a_n-X_{1} \| \geq \epsilon/2 }=\PP(X_1 \notin A_n)=\PP(X_0 \notin A_n)   
Line 54: Line 55:
 $$ $$
 which proves \eqref{eq:​h} and the proof of the Proposition is completed. ​ which proves \eqref{eq:​h} and the proof of the Proposition is completed. ​
 +
 +
world/knn.1699193445.txt.gz · Last modified: 2023/11/05 15:10 by rdouc