$$ \newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\condtrans}[3]{p_{#1}(#2|#3)} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\cro}[1]{\langle #1 \rangle} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\jointtrans}[3]{p_{#1}(#2,#3)} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lp}[1]{\mathsf{L}_{{#1}}} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\N}{\mathcal{N}} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\pminfty}{_{-\infty}^\infty} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\revcondtrans}[3]{q_{#1}(#2|#3)} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}} $$
$$ \newcommand{\mcD}{\mathcal D} \newcommand{\mcl}{\mathcal L} $$
Let $f$ and $(h_i)_{1 \leq i \leq n}$ be convex differentiable functions on $\Xset=\rset^p$. Let $\mcD=\cap_{i=1}^n \{h_i \leq 0\}\neq \emptyset$ and note that by convexity of the functions $h_i$, the set $\mcD$ is actually a convex set. We are interested in the infimum of the convex function $f$ on the convex set $\mcD$. Define the Lagrange function $$ \mcl(x,\lambda)=f(x)+\sum_{i=1}^n \lambda_i h_i(x) $$ where $\lambda=(\lambda_1,\ldots,\lambda_n)^T \in \rset^n$. We first show the weak duality relation. Start with this simple remark: for all $(x,\lambda) \in \Xset \times \rset^n$, $$ \inf_{x \in \Xset} \mcl(x,\lambda) \leq \mcl(x,\lambda) $$ Taking the supremum wrt $\lambda \geq 0$ on both sides yields: $$ \sup_{\lambda\geq 0}\inf_{x \in \Xset} \mcl(x,\lambda) \leq \sup_{\lambda\geq 0} \mcl(x,\lambda)=\infty \indin{x\notin \mcD}+f(x)\indin{x\in \mcD} $$ And taking now the infimum wrt $x \in \Xset$ on both sides, we finally get the weak duality relation: \begin{equation} \label{eq:weak} \sup_{\lambda\geq 0}\inf_{x \in \Xset} \mcl(x,\lambda) \leq \inf_{x \in \Xset} \sup_{\lambda\geq 0}\mcl(x,\lambda)=\inf_{x \in \mcD} f(x) \end{equation} Note that in the lhs (left-hand side), the infimum is wrt $x\in \Xset$ and therefore, there is no constraint, which is nice… The rhs (right-hand side) is called the primal problem and the lhs the dual problem. Note, since $x\mapsto \mcl(x,\lambda)$ is convex, that the dual problem $\sup_{\lambda\geq 0}\inf_{x \in \Xset} \mcl(x,\lambda)$ is equivalent to $$ \sup \set{\mcl(x,\lambda)}{\lambda \geq 0\mbox{ and }\nabla_x \mcl(x,\lambda)=0} $$
To obtain the equality in \eqref{eq:weak} (which is named the strong duality relation), we actually need some additional assumptions (for example the existence of a Slater point). But before that, let us check a very useful relation…
Lemma Assume that there exist $(x^*,\lambda^*) \in \mcD\times (\rset^+)^n$ such that \begin{equation} \nabla_x \mcl(x^*,\lambda^*)=0 \end{equation} and for all $i \in [1:n]$, we have either $\lambda^*_i=0$ or $h_i(x^*)=0$ . Then, the strong duality holds and $$ f(x^*)=\inf_{x \in \mcD} f(x)=\mcl(x^*,\lambda^*) $$
Definition We say that $(x^*,\lambda^*) \in \Xset \times (\rset^+)^n$ is a saddle point of the Lagrange function $\mcl$ if for every $(x,\lambda) \in \Xset \times (\rset^+)^n$, \begin{equation}\label{eq:saddle} \mcl(x^*,\lambda) \leq \mcl(x,\lambda^*) \end{equation}
Saddle point Lemma If $(x^*,\lambda^*) \in \Xset \times (\rset^+)^n$ is a saddle point for $\mcl$ then the strong duality holds, and the KKT conditions holds for $(x^*,\lambda^*)$.
We now assume the existence of Slater points: there exists $\tilde x \in \mcD$ such that for all $i \in \{1,\ldots,n\}$, $h_i(\tilde x)<0$.
The convex Farkas lemma Assume that there exists a Slater point. Then, $\{f<0\} \cap \mcD =\emptyset$ iff there exists $\lambda^* \geq 0$ such that for all $x\in \mcD$, $f(x)+\sum_{i=1}^n \lambda^*_i h_i(x) \geq 0$.
The Farkas lemma will imply the strong duality under the existence of a Slater point.
The necessary condition Assume that $f(x^*)=\inf_{x\in \mcD} f(x)$ for some $x^* \in\mcD$ and that there exists a Slater point. Then there exist $\lambda^* \geq 0$ such that $(x^*,\lambda^*)$ is a saddle point and by the Saddle point lemma, the strong duality holds.