$$ \newcommand{\arginf}{\mathrm{arginf}} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\asconv}[1]{\stackrel{#1-a.s.}{\rightarrow}} \newcommand{\Aset}{\mathsf{A}} \newcommand{\b}[1]{{\mathbf{#1}}} \newcommand{\ball}[1]{\mathsf{B}(#1)} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bproof}{\textbf{Proof :}\quad} \newcommand{\bmuf}[2]{b_{#1,#2}} \newcommand{\card}{\mathrm{card}} \newcommand{\chunk}[3]{{#1}_{#2:#3}} \newcommand{\condtrans}[3]{p_{#1}(#2|#3)} \newcommand{\convprob}[1]{\stackrel{#1-\text{prob}}{\rightarrow}} \newcommand{\Cov}{\mathbb{C}\mathrm{ov}} \newcommand{\cro}[1]{\langle #1 \rangle} \newcommand{\CPE}[2]{\PE\lr{#1| #2}} \renewcommand{\det}{\mathrm{det}} \newcommand{\dimlabel}{\mathsf{m}} \newcommand{\dimU}{\mathsf{q}} \newcommand{\dimX}{\mathsf{d}} \newcommand{\dimY}{\mathsf{p}} \newcommand{\dlim}{\Rightarrow} \newcommand{\e}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\eproof}{\quad \Box} \newcommand{\eremark}{</WRAP>} \newcommand{\eqdef}{:=} \newcommand{\eqlaw}{\stackrel{\mathcal{L}}{=}} \newcommand{\eqsp}{\;} \newcommand{\Eset}{ {\mathsf E}} \newcommand{\esssup}{\mathrm{essup}} \newcommand{\fr}[1]{{\left\langle #1 \right\rangle}} \newcommand{\falph}{f} \renewcommand{\geq}{\geqslant} \newcommand{\hchi}{\hat \chi} \newcommand{\Hset}{\mathsf{H}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\img}{\text{Im}} \newcommand{\indi}[1]{\mathbf{1}_{#1}} \newcommand{\indiacc}[1]{\mathbf{1}_{\{#1\}}} \newcommand{\indin}[1]{\mathbf{1}\{#1\}} \newcommand{\itemm}{\quad \quad \blacktriangleright \;} \newcommand{\jointtrans}[3]{p_{#1}(#2,#3)} \newcommand{\ker}{\text{Ker}} \newcommand{\klbck}[2]{\mathrm{K}\lr{#1||#2}} \newcommand{\law}{\mathcal{L}} \newcommand{\labelinit}{\pi} \newcommand{\labelkernel}{Q} \renewcommand{\leq}{\leqslant} \newcommand{\lone}{\mathsf{L}_1} \newcommand{\lp}[1]{\mathsf{L}_{{#1}}} \newcommand{\lrav}[1]{\left|#1 \right|} \newcommand{\lr}[1]{\left(#1 \right)} \newcommand{\lrb}[1]{\left[#1 \right]} \newcommand{\lrc}[1]{\left\{#1 \right\}} \newcommand{\lrcb}[1]{\left\{#1 \right\}} \newcommand{\ltwo}[1]{\PE^{1/2}\lrb{\lrcb{#1}^2}} \newcommand{\Ltwo}{\mathrm{L}^2} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mcbb}{\mathcal B} \newcommand{\mcf}{\mathcal{F}} \newcommand{\meas}[1]{\mathrm{M}_{#1}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\normmat}[1]{{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert #1 \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}} \newcommand{\nset}{\mathbb N} \newcommand{\N}{\mathcal{N}} \newcommand{\one}{\mathsf{1}} \newcommand{\PE}{\mathbb E} \newcommand{\pminfty}{_{-\infty}^\infty} \newcommand{\PP}{\mathbb P} \newcommand{\projorth}[1]{\mathsf{P}^\perp_{#1}} \newcommand{\Psif}{\Psi_f} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\pscal}[2]{\langle #1,#2\rangle} \newcommand{\psconv}{\stackrel{\PP-a.s.}{\rightarrow}} \newcommand{\qset}{\mathbb Q} \newcommand{\revcondtrans}[3]{q_{#1}(#2|#3)} \newcommand{\rmd}{\mathrm d} \newcommand{\rme}{\mathrm e} \newcommand{\rmi}{\mathrm i} \newcommand{\Rset}{\mathbb{R}} \newcommand{\rset}{\mathbb{R}} \newcommand{\rti}{\sigma} \newcommand{\section}[1]{==== #1 ====} \newcommand{\seq}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\set}[2]{\lrc{#1\eqsp: \eqsp #2}} \newcommand{\sg}{\mathrm{sgn}} \newcommand{\supnorm}[1]{\left\|#1\right\|_{\infty}} \newcommand{\thv}{{\theta_\star}} \newcommand{\tmu}{ {\tilde{\mu}}} \newcommand{\Tset}{ {\mathsf{T}}} \newcommand{\Tsigma}{ {\mathcal{T}}} \newcommand{\ttheta}{{\tilde \theta}} \newcommand{\tv}[1]{\left\|#1\right\|_{\mathrm{TV}}} \newcommand{\unif}{\mathrm{Unif}} \newcommand{\weaklim}[1]{\stackrel{\mathcal{L}_{#1}}{\rightsquigarrow}} \newcommand{\Xset}{{\mathsf X}} \newcommand{\Xsigma}{\mathcal X} \newcommand{\Yset}{{\mathsf Y}} \newcommand{\Ysigma}{\mathcal Y} \newcommand{\Var}{\mathbb{V}\mathrm{ar}} \newcommand{\zset}{\mathbb{Z}} \newcommand{\Zset}{\mathsf{Z}} $$

2023/11/14 18:37

Approximation Lemma

Let $(\Xset^{\mathbb{N}},\Xsigma^{\otimes\mathbb{N}},\mathbb{P})$ be a probability space. For each $k\in\mathbb{N}$, define $$ \mathcal{F}_k=\sigma(X_{1:k}), $$ where $X_i$ denotes the coordinate projection on the $i$-th component, that is, $X_i(\omega)=\omega_i$ for $\omega\in\Xset^{\mathbb{N}}$.

Lemma (Approximation Lemma). Any set $A\in\mathcal{X}^{\otimes\mathbb{N}}$ satisfies the approximation property:

For every $\delta>0$, there exist an integer $k\in\mathbb{N}$ and a set $B\in\mathcal{F}_k$ such that $$ \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big]\leq\delta. $$

Proof

The proof is a classical application of the monotone class theorem.

Let $\mathcal{M}$ denote the collection of all sets $A\in\mathcal{X}^{\otimes\mathbb{N}}$ that satisfy the approximation property stated in the lemma. We show that $\mathcal{M}$ is a monotone class.

Let $A_0,A_1\in\mathcal{M}$ with $A_0\subset A_1$. We claim that $A_1\setminus A_0\in\mathcal{M}$.

For arbitrary sets $A_0,A_1,B_0,B_1$, the following identity holds: $$ \mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0} =\mathbb{1}_{A_1}\mathbb{1}_{A_0^c}-\mathbb{1}_{B_1}\mathbb{1}_{B_0^c} =\mathbb{1}_{A_1}(\mathbb{1}_{A_0^c}-\mathbb{1}_{B_0^c}) +(\mathbb{1}_{A_1}-\mathbb{1}_{B_1})\mathbb{1}_{B_0^c}. $$

Taking absolute values and expectations yields $$ \mathbb{E}\big[|\mathbb{1}_{A_1\setminus A_0}-\mathbb{1}_{B_1\setminus B_0}|\big] \leq \mathbb{E}\big[|\mathbb{1}_{A_0}-\mathbb{1}_{B_0}|\big] + \mathbb{E}\big[|\mathbb{1}_{A_1}-\mathbb{1}_{B_1}|\big]. $$

Since $A_0,A_1\in\mathcal{M}$, both terms on the right-hand side can be made arbitrarily small. Hence, the approximation property holds for $A_1\setminus A_0$.

Let $(A_n)_{n\geq0}$ be an increasing sequence of sets in $\mathcal{M}$, and define $$ A=\bigcup_{n\geq0}A_n. $$

For any set $B$, the triangle inequality gives $$ \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_B|\big] \leq \mathbb{E}\big[|\mathbb{1}_A-\mathbb{1}_{A_n}|\big] + \mathbb{E}\big[|\mathbb{1}_{A_n}-\mathbb{1}_B|\big]. $$

Since $\mathbb{1}_{A_n}\uparrow\mathbb{1}_A$ pointwise, the first term converges to zero, while the second term can be made arbitrarily small because $A_n\in\mathcal{M}$. Therefore, $A\in\mathcal{M}$.

Finally, $\mathcal{M}$ is a monotone class containing all $\mathcal{F}_k$. By the monotone class theorem, it contains $$ \sigma\Big(\bigcup_{k\geq0}\mathcal{F}_k\Big)=\mathcal{X}^{\otimes\mathbb{N}}. $$ This completes the proof.