{{page>:defs}} ====== Minkovski's inequality ====== Let $f, g: \Xset \to \rset$ be two measurable functions on a measurable space $(\Xset, \Xsigma)$, and let $\mu$ be a non-negative measure on $(\Xset, \Xsigma)$. Then, for any $p \geq 1$, $$\lr{\int |f+g|^p \rmd \mu}^{1/p} \leq \lr{\int |f|^p \rmd \mu}^{1/p} + \lr{\int |g|^p \rmd \mu}^{1/p}.$$ ===== Proof ===== Some alternative proofs can be found [[https://en.wikipedia.org/wiki/Minkowski_inequality|here]]. Without loss of generality, we assume that $p>1$, $f, g \in \lp{p}(\mu)$ and $f, g \geq 0$ (the general case can be handled using the inequality $|f+g| \leq |f| + |g|$). For $s > 0$, define $$\varphi(s) = \lr{\int (f + s g)^p \rmd \mu}^{1/p}.$$ Then, $$\varphi'(s) = \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \int (f + s g)^{p-1} g \, \rmd \mu.$$ Using Hölder’s inequality for the second term, we can bound $\varphi'(s)$ as follows: $$\varphi'(s) \leq \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \lr{\int (f + s g)^p \rmd \mu}^{\frac{p-1}{p}} \lr{\int g^p \rmd \mu}^{1/p} = \lr{\int g^p \rmd \mu}^{1/p}.$$ Hence, $$\lr{\int (f + g)^p \rmd \mu}^{1/p} = \varphi(1) = \varphi(0) + \int_0^1 \varphi'(s) \, \rmd s \leq \lr{\int f^p \rmd \mu}^{1/p}+ \lr{\int g^p \rmd \mu}^{1/p}.$$ This completes the proof.