on{{page>:defs}} ====== De Finetti's Representation Theorem for Exchangeable Random Elements ====== ===== Theorem ===== **De Finetti's Theorem:** Let $(X_i)_{i\in\mathbb{N}}$ be a family of **exchangeable random elements** defined on a measurable space $(\mathsf{X},\mathcal{X})$. Then, there exists a $\sigma$-field $\mathcal{G}_\infty$ such that, **conditionally on $\mathcal{G}_\infty$**, the random variables $(X_i)_{i\in\mathbb{N}}$ are **independent and identically distributed (i.i.d.)**. The proof is based on the paper "Uses of exchangeability" by J. F. Kingman [[https://projecteuclid.org/journalArticle/Download?urlId=10.1214%2Faop%2F1176995566|Click here to see the paper]]. ===== Proof ===== Without loss of generality, we model $(X_i)_{i\in\mathbb{N}}$ as the coordinate projections on the canonical probability space $(\mathsf{X}^{\mathbb{N}},\mathcal{X}^{\otimes\mathbb{N}},\mathbb{P})$. We proceed as follows: 1. **Reverse filtration construction:** * For each $n\in\mathbb{N}$, let $\mathcal{G}_n$ be the $\sigma$-field generated by all measurable functions $f:\mathsf{X}^{\mathbb{N}}\to\mathbb{R}$ invariant under any permutation of the first $n$ coordinates, i.e. for any permutation $\pi$ of $\{1,\ldots,n\}$ and any $x\in\mathsf{X}^{\mathbb{N}}$, $$ f(x_1,\ldots,x_n,x_{n+1},\ldots)=f(x_{\pi(1)},\ldots,x_{\pi(n)},x_{n+1},\ldots). $$ * $(\mathcal{G}_n)_{n\in\mathbb{N}}$ is a reverse filtration with $\mathcal{G}_n\supseteq\mathcal{G}_{n+1}$ and $$ \mathcal{G}_\infty=\bigcap_{n\in\mathbb{N}}\mathcal{G}_n. $$ * $\mathcal{G}_\infty$ is generated by all functions invariant under any finite permutation of coordinates. 2. **Conditional expectation and empirical averages:** * For any bounded measurable $h:\mathsf{X}\to\mathbb{R}$, the empirical average $\frac1n\sum_{i=1}^n h(X_i)$ is $\mathcal{G}_n$-measurable. * For any $A\in\mathcal{G}_n$, exchangeability implies $$ \mathbb{E}\!\left[\left(\frac1n\sum_{i=1}^n h(X_i)\right)\mathbf1_A\right] =\frac1n\sum_{i=1}^n \mathbb{E}\!\left[\left( h(X_i)\right)\mathbf1_A\right] =\mathbb{E}[h(X_1)\mathbf1_A]. $$ * The two previous item show the amazing formula: $$ \frac1n\sum_{i=1}^n h(X_i)=\mathbb{E}[h(X_1)\mid\mathcal{G}_n], \quad a.s. $$ * By the **reverse martingale convergence** theorem (see for example [[world:forward-downward-martingale|Upcrossing Inequality and Martingale Convergence]]), $$ \frac1n\sum_{i=1}^n h(X_i)\xrightarrow{\mathrm{a.s.}}\mathbb{E}[h(X_1)\mid\mathcal{G}_\infty]. $$ 3. **Multivariate functions:** * For bounded measurable $f:\mathsf{X}^k\to\mathbb{R}$, $$ \mathbb{E}[f(X_1,\ldots,X_k)\mid\mathcal{G}_\infty] =\lim_{n\to\infty}\frac1{n(n-1)\cdots(n-k+1)} \sum_{\substack{i_{1:k} \in [1:n]^k \le n,\ldots,1 \le i_k\le n\\ i_j\neq i_\ell}} f(X_{i_1},\ldots,X_{i_k}). $$ * But we have $$ \frac1{n(n-1)\cdots(n-k+1)} \sum_{\substack{1\le i_1,\ldots,i_k\le n\\ i_j\neq i_\ell}} f(X_{i_1},\ldots,X_{i_k}) + O\lr{\frac1n} = \frac1{n^k}\sum_{i_1=1}^n\cdots\sum_{i_k=1}^n f(X_{i_1},\ldots,X_{i_k}). $$ * Hence, for product functions $f(x_1,\ldots,x_k)=f_1(x_1)\cdots f_k(x_k)$, $$ \mathbb{E}[f_1(X_1)\cdots f_k(X_k)\mid\mathcal{G}_\infty] =\prod_{\ell=1}^k\mathbb{E}[f_\ell(X_1)\mid\mathcal{G}_\infty]. $$ * Thus, conditionally on $\mathcal{G}_\infty$, $(X_i)$ are independent.