Processing math: 33%

Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:useful-bounds

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:useful-bounds [2022/11/17 16:54]
rdouc [Doob's inequalities]
world:useful-bounds [2022/11/18 11:14] (current)
rdouc [Doob's inequalities]
Line 74: Line 74:
  
 ==== Maximal Kolmogorov inequality ==== ==== Maximal Kolmogorov inequality ====
 +<WRAP center round tip 80%>
 Let (Mk)k\nset be a square integrable (\mcfk)k\nset-martingale. Then,  Let (Mk)k\nset be a square integrable (\mcfk)k\nset-martingale. Then, 
 \begin{equation} \begin{equation}
Line 79: Line 80:
 \end{equation} \end{equation}
  
-\bproof+</​WRAP>​
  
 +\bproof
 +<note tip>
 +We provide a complete proof here but actually, we can also apply Doob's inequality below to the non-negative submartingale M2n
 +</​note>​
 Let σ=inf with the convention that \inf \emptyset=\infty. ​ Let \sigma=\inf\set{k\geq 1}{|M_k| \geq \alpha} with the convention that \inf \emptyset=\infty. ​
 Then,  Then, 
Line 111: Line 116:
 </​WRAP>​ </​WRAP>​
 === Proof === === Proof ===
-We prove **(ii)**. ​Define \tau_\epsilon=\inf \set{k\in \nset}{X_k \geq \epsilon}+Define \tau_\epsilon=\inf \set{k\in \nset}{X_k \geq \epsilon} ​with the convention that \inf \emptyset =\infty. Then,  
 +\begin{align} \label{eq:​fond} 
 +\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon}= \epsilon \PP\lr{\tau_\epsilon \leq n}&\leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}] 
 +\end{align}
  
 +  * We prove **(i)**. From \eqref{eq:​fond},​ we have 
 +$$
 +\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon} \leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}] \leq \PE[X_{\tau_\epsilon \wedge n}]=\PE\lrb{\PE[X_{\tau_\epsilon \wedge n}|\mcf_0]}\leq \PE[X_{\tau_\epsilon \wedge 0}]=\PE[X_0]
 +$$
 +where we used in the second inequality that (X_n) is non-negative and in the third inequality that (X_{\tau_\epsilon \wedge n}) is a supermartingale. The proof then follows by letting n goes to infinity. ​
 +  * We now turn to the proof of **(ii)**. Using \eqref{eq:​fond},​
 +\begin{align*}
 +\epsilon \PP\lr{\max_{k=1}^n X_k \geq \epsilon}&​\leq \PE[X_{\tau_\epsilon} \indiacc{\tau_\epsilon \leq n}]=\sum_{k=0}^n \PE[X_k \indiacc{\tau_\epsilon=k}]\\
 +&\leq \sum_{k=0}^n \PE[\PE[X_n|\mcf_k] \indiacc{\tau_\epsilon=k}]=\sum_{k=0}^n \PE[X_n \indiacc{\tau_\epsilon=k}]=\PE[X_n \indiacc{\tau_\epsilon\leq n}] \leq  \PE[X_n]
 +\end{align*}
 +where we used in the last inequality that (X_n) is non-negative. The proof is completed. ​
 +\eproof
world/useful-bounds.1668700479.txt.gz · Last modified: 2022/11/17 16:54 by rdouc