This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
world:quiz2 [2025/10/01 00:57] rdouc created |
world:quiz2 [2025/10/01 22:14] (current) rdouc |
||
---|---|---|---|
Line 7: | Line 7: | ||
$\begin{pmatrix}{\tilde \beta}_1\\ {\tilde \beta}_2 \end{pmatrix}=(X'X)^{-1}X'Y$. | $\begin{pmatrix}{\tilde \beta}_1\\ {\tilde \beta}_2 \end{pmatrix}=(X'X)^{-1}X'Y$. | ||
Which of the following statements are always true: | Which of the following statements are always true: | ||
- | - $\tilde \beta_1$ is an unbiased estimator of $\beta_1$. | + | - $\tilde \beta_1$ is an unbiased estimator of $\beta_1$. VRAI |
- | - $\PE[\tilde \beta_2]=0$. | + | - $\PE[\tilde \beta_2]=0$. VRAI |
- | - Using the Gauss-Markov theorem, we can show that $V (\hat \beta_1) \leq V(\tilde \beta_1)$. | + | - Using the Gauss-Markov theorem, we can show that $V (\hat \beta_1) \leq V(\tilde \beta_1)$. VRAI |
- | - $\mathrm{Var}(\hat \beta_1)= \frac{\sigma^2}{\sum_{i=1}^n x_{i,1}^2/n - (\sum_{i=1}^n x_{i,1}/n)^2 }$. | + | - $\mathrm{Var}(\hat \beta_1)= \frac{\sigma^2}{\sum_{i=1}^n x_{i,1}^2/n - (\sum_{i=1}^n x_{i,1}/n)^2 }$. FAUX |
- | - $\mathrm{Var}(\hat \beta_1)= \frac{\sigma^2}{\sum_{i=1}^n x_{i,1}^2}$. | + | - $\mathrm{Var}(\hat \beta_1)= \frac{\sigma^2}{\sum_{i=1}^n x_{i,1}^2}$. VRAI |
- | - $\mathrm{Var}(\hat \beta_1)= \frac{\sigma^2}{\sum_{i=1}^n x_{i,1}^2/n}$. | + | - $\mathrm{Var}(\hat \beta_1)= \frac{\sigma^2}{\sum_{i=1}^n x_{i,1}^2/n}$. FAUX |