Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:quiz1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:quiz1 [2025/09/30 14:13]
rdouc ↷ Page moved from mine:quiz1 to emines2024:quiz1
world:quiz1 [2025/09/30 19:02] (current)
rdouc
Line 6: Line 6:
  
  
-^ Number ​ ^ statement ​                           +^ Number ​ ^ statement ​                                                                                                                                                           ^ answer ​    
-| 1       | \(\sum_{i=1}^n (x_i-\bar x)=0\) ​                                                                                                                                     | +| 1       | \(\sum_{i=1}^n (x_i-\bar x)=0\) ​                                                                                                                                     ​| **TRUE** ​  
-| 2       | \((\sum_{i=1}^n x_i)-\bar x=0\)                                                                                                                                      | +| 2       | \((\sum_{i=1}^n x_i)-\bar x=0\)                                                                                                                                      ​| **FALSE**  ​
-| 3       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{\sum_{i=1}^n x_i(y_i-\bar y)}{\sum_{i=1}^n (x_i-\bar x)^2}\) ​                | +| 3       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{\sum_{i=1}^n x_i(y_i-\bar y)}{\sum_{i=1}^n (x_i-\bar x)^2}\) ​                | **TRUE** ​  
-| 4       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{(\sum_{i=1}^n x_i y_i/n) -\bar x \bar y}{\sum_{i=1}^n x_i^2/​n-(\bar x)^2}\) ​ | +| 4       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{(\sum_{i=1}^n x_i y_i/n) -\bar x \bar y}{\sum_{i=1}^n x_i^2/​n-(\bar x)^2}\)  ​| **TRUE** ​  
-| 5       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{(\sum_{i=1}^n x_i y_i) -\bar x \bar y}{(\sum_{i=1}^n x_i^2)-(\bar x)^2}\) ​   | +| 5       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{(\sum_{i=1}^n x_i y_i) -\bar x \bar y}{(\sum_{i=1}^n x_i^2)-(\bar x)^2}\) ​   ​| **FALSE**  ​
-| 6       | The regression line is defined by the equation \(y=\beta_1 + \beta_2 x\).                                                                                            | +| 6       | The regression line is defined by the equation \(y=\beta_1 + \beta_2 x\).                                                                                            ​| **FALSE**  ​
-| 7       | The regression line is defined by the equation \(y=\hat \beta_1 +\hat \beta_2 x\).                                                                                   | +| 7       | The regression line is defined by the equation \(y=\hat \beta_1 +\hat \beta_2 x\).                                                                                   | **TRUE** ​  
-| 8       | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=19\). ​                        | +| 8       | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=19\). ​                        | **FALSE**  ​
-| 9       | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=190\). ​                       | +| 9       | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=190\). ​                       ​| **TRUE** ​  
-| 10      | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=154\). ​                       | +| 10      | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=154\). ​                       | **FALSE** ​ |
- +
-{{url>​https://​docs.google.com/​forms/​d/​e/​1FAIpQLSdhzll6PDvzp0Cjp62pTtYzaywzBzjrZNn6hgbihwf9S4_ReQ/​viewform?​embedded=true 100%,600px noborder}} +
- +
- +
world/quiz1.1759234416.txt.gz · Last modified: 2025/09/30 14:13 by rdouc