Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:quiz1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:quiz1 [2025/09/30 01:03]
rdouc
world:quiz1 [2025/09/30 19:02] (current)
rdouc
Line 4: Line 4:
 We observe \((x_i,​y_i)\) for \(i \in [1:n]\) where \(y_i=\beta_1 + \beta_2 x_i+\epsilon_i\) for \(i \in [1:n]\). We assume that there exists \(i\neq j\), such that \(x_i\neq x_j\) and \(\mathbb{E}[\epsilon_i]=0\) and \(\mathbb{C}\mathrm{ov}(\epsilon_i,​\epsilon_j)=\sigma^2 \mathbf{1}(i \neq j)\). We use the notation: \(\bar x=\sum_{i=1}^n x_i/n\) and \(\bar y=\sum_{i=1}^n y_i/​n\). ​ We observe \((x_i,​y_i)\) for \(i \in [1:n]\) where \(y_i=\beta_1 + \beta_2 x_i+\epsilon_i\) for \(i \in [1:n]\). We assume that there exists \(i\neq j\), such that \(x_i\neq x_j\) and \(\mathbb{E}[\epsilon_i]=0\) and \(\mathbb{C}\mathrm{ov}(\epsilon_i,​\epsilon_j)=\sigma^2 \mathbf{1}(i \neq j)\). We use the notation: \(\bar x=\sum_{i=1}^n x_i/n\) and \(\bar y=\sum_{i=1}^n y_i/​n\). ​
 Which of the following statements are always true:  Which of the following statements are always true: 
- 
-<WRAP scroll 300px> 
-^ Number ​ ^ statement ​                                                                                                                                                           ^ 
-| 1       | \(\sum_{i=1}^n (x_i-\bar x)=0\) ​                                                                                                                                     | 
-| 2       | \((\sum_{i=1}^n x_i)-\bar x=0\)                                                                                                                                      | 
-| 3       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{\sum_{i=1}^n x_i(y_i-\bar y)}{\sum_{i=1}^n (x_i-\bar x)^2}\) ​                | 
-| 4       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{(\sum_{i=1}^n x_i y_i/n) -\bar x \bar y}{\sum_{i=1}^n x_i^2/​n-(\bar x)^2}\) ​ | 
-| 5       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{(\sum_{i=1}^n x_i y_i) -\bar x \bar y}{(\sum_{i=1}^n x_i^2)-(\bar x)^2}\) ​   | 
-| 6       | The regression line is defined by the equation \(y=\beta_1 + \beta_2 x\).                                                                                            | 
-| 7       | The regression line is defined by the equation \(y=\hat \beta_1 +\hat \beta_2 x\).                                                                                   | 
-| 8       | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=19\). ​                        | 
-| 9       | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=190\). ​                       | 
-| 10      | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=154\). ​                       | 
-</​WRAP>​ 
- 
-{{url>​https://​docs.google.com/​forms/​d/​e/​1FAIpQLSdhzll6PDvzp0Cjp62pTtYzaywzBzjrZNn6hgbihwf9S4_ReQ/​viewform?​embedded=true 100%,600px noborder}} 
- 
  
  
 +^ Number ​ ^ statement ​                                                                                                                                                           ^ answer ​    ^
 +| 1       | \(\sum_{i=1}^n (x_i-\bar x)=0\) ​                                                                                                                                     | **TRUE** ​  |
 +| 2       | \((\sum_{i=1}^n x_i)-\bar x=0\)                                                                                                                                      | **FALSE** ​ |
 +| 3       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{\sum_{i=1}^n x_i(y_i-\bar y)}{\sum_{i=1}^n (x_i-\bar x)^2}\) ​                | **TRUE** ​  |
 +| 4       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{(\sum_{i=1}^n x_i y_i/n) -\bar x \bar y}{\sum_{i=1}^n x_i^2/​n-(\bar x)^2}\) ​ | **TRUE** ​  |
 +| 5       | The regression coefficient estimator \(\hat \beta_2\) is given by: \(\hat \beta_2=\frac{(\sum_{i=1}^n x_i y_i) -\bar x \bar y}{(\sum_{i=1}^n x_i^2)-(\bar x)^2}\) ​   | **FALSE** ​ |
 +| 6       | The regression line is defined by the equation \(y=\beta_1 + \beta_2 x\).                                                                                            | **FALSE** ​ |
 +| 7       | The regression line is defined by the equation \(y=\hat \beta_1 +\hat \beta_2 x\).                                                                                   | **TRUE** ​  |
 +| 8       | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=19\). ​                        | **FALSE** ​ |
 +| 9       | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=190\). ​                       | **TRUE** ​  |
 +| 10      | Assume that the regression line is \(y=5 x+4\). Assume that \(n=10\), \(\sum_{i=1}^n x_i=30\). Then, we obtain that \(\sum_{i=1}^n y_i=154\). ​                       | **FALSE** ​ |
world/quiz1.1759186991.txt.gz · Last modified: 2025/09/30 01:03 by rdouc