Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:pinsker

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
world:pinsker [2025/07/08 16:44]
rdouc [What?]
world:pinsker [2025/07/08 16:52] (current)
rdouc [The proof]
Line 37: Line 37:
 \left(\int ​ |\bar f(x)|\ |\sigma(x)-\pi(x)|\rmd x\right)^2 \\ \left(\int ​ |\bar f(x)|\ |\sigma(x)-\pi(x)|\rmd x\right)^2 \\
 &​=\left(\int |\bar f(x)|\ \sigma(x)\ |\frac{\pi(x)}{\sigma(x)}-1|\rmd x\right)^2 \\  &​=\left(\int |\bar f(x)|\ \sigma(x)\ |\frac{\pi(x)}{\sigma(x)}-1|\rmd x\right)^2 \\ 
-&=\left(\int \sigma(\rmd x) \sqrt{\frac{2\bar f^2(x)}{3}\left(2\frac{\pi(x)}{\sigma(x)}+1\right)} \sqrt{\left( -\log \frac{\pi(x)}{\sigma(x)}+&\leq\left(\int \sigma(\rmd x) \sqrt{\frac{2\bar f^2(x)}{3}\left(2\frac{\pi(x)}{\sigma(x)}+1\right)} \sqrt{\left( -\log \frac{\pi(x)}{\sigma(x)}
 +\frac{\pi(x)}{\sigma(x)}-1\right)}\right)^2 \end{align*} And we conclude by applying Holder'​s inequality: $\left(\int \sigma(\rmd x) \sqrt{a(x)}\sqrt{b(x)} \right)^2\leq \int \sigma(\rmd x) a(x) \times \int \sigma(\rmd x) b(x)$ $\eproof$ +\frac{\pi(x)}{\sigma(x)}-1\right)}\right)^2 \end{align*} And we conclude by applying Holder'​s inequality: $\left(\int \sigma(\rmd x) \sqrt{a(x)}\sqrt{b(x)} \right)^2\leq \int \sigma(\rmd x) a(x) \times \int \sigma(\rmd x) b(x)$ $\eproof$
  
  
world/pinsker.1751985844.txt.gz · Last modified: 2025/07/08 16:44 by rdouc