This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
world:pinsker [2025/06/10 19:10] rdouc [The proof] |
world:pinsker [2025/07/08 16:52] (current) rdouc [The proof] |
||
---|---|---|---|
Line 19: | Line 19: | ||
If $0\leq f\leq 1$, then $\Var_{\mu}(f)=\PE[f^2]-\PE^2[f]\leq \PE[f]-\PE^2[f]=\PE[f](1-\PE[f]) \leq 1/4$ and we get | If $0\leq f\leq 1$, then $\Var_{\mu}(f)=\PE[f^2]-\PE^2[f]\leq \PE[f]-\PE^2[f]=\PE[f](1-\PE[f]) \leq 1/4$ and we get | ||
$$ | $$ | ||
- | \rmd_{tv}(\sigma,\pi) \leq KL(\sigma|| \pi)/2 | + | \rmd_{tv}^2(\sigma,\pi) \leq KL(\sigma|| \pi)/2 |
$$ | $$ | ||
===== The proof ===== | ===== The proof ===== | ||
Line 37: | Line 37: | ||
\left(\int |\bar f(x)|\ |\sigma(x)-\pi(x)|\rmd x\right)^2 \\ | \left(\int |\bar f(x)|\ |\sigma(x)-\pi(x)|\rmd x\right)^2 \\ | ||
&=\left(\int |\bar f(x)|\ \sigma(x)\ |\frac{\pi(x)}{\sigma(x)}-1|\rmd x\right)^2 \\ | &=\left(\int |\bar f(x)|\ \sigma(x)\ |\frac{\pi(x)}{\sigma(x)}-1|\rmd x\right)^2 \\ | ||
- | &=\left(\int \sigma(\rmd x) \sqrt{\frac{2\bar f^2(x)}{3}\left(2\frac{\pi(x)}{\sigma(x)}+1\right)} \sqrt{\left( -\log \frac{\pi(x)}{\sigma(x)} | + | &\leq\left(\int \sigma(\rmd x) \sqrt{\frac{2\bar f^2(x)}{3}\left(2\frac{\pi(x)}{\sigma(x)}+1\right)} \sqrt{\left( -\log \frac{\pi(x)}{\sigma(x)} |
+\frac{\pi(x)}{\sigma(x)}-1\right)}\right)^2 \end{align*} And we conclude by applying Holder's inequality: $\left(\int \sigma(\rmd x) \sqrt{a(x)}\sqrt{b(x)} \right)^2\leq \int \sigma(\rmd x) a(x) \times \int \sigma(\rmd x) b(x)$ $\eproof$ | +\frac{\pi(x)}{\sigma(x)}-1\right)}\right)^2 \end{align*} And we conclude by applying Holder's inequality: $\left(\int \sigma(\rmd x) \sqrt{a(x)}\sqrt{b(x)} \right)^2\leq \int \sigma(\rmd x) a(x) \times \int \sigma(\rmd x) b(x)$ $\eproof$ | ||