Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:pinsker

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:pinsker [2022/03/16 07:40]
127.0.0.1 external edit
world:pinsker [2025/07/08 16:52] (current)
rdouc [The proof]
Line 19: Line 19:
 If $0\leq f\leq 1$, then $\Var_{\mu}(f)=\PE[f^2]-\PE^2[f]\leq \PE[f]-\PE^2[f]=\PE[f](1-\PE[f]) \leq 1/4$ and we get  If $0\leq f\leq 1$, then $\Var_{\mu}(f)=\PE[f^2]-\PE^2[f]\leq \PE[f]-\PE^2[f]=\PE[f](1-\PE[f]) \leq 1/4$ and we get 
 $$ $$
-\rmd_{tv}(\sigma,​\pi) \leq  KL(\sigma|| \pi)/2+\rmd_{tv}^2(\sigma,​\pi) \leq  KL(\sigma|| \pi)/2
 $$ $$
 ===== The proof ===== ===== The proof =====
Line 31: Line 31:
 </​WRAP>​ </​WRAP>​
  
-Indeed, set $h(y)=\frac{2}{3}(2y+1)(-\log y+y-1)-(y-1)^2$ and check that $h(1)=h'​(1)=0$ and $h''​(y)=2(x-1)^2/​(3y^2)>​0$ for all $y \geq 0$. Therefore, $h$ is a convex function on $\rset^+$ and attains its minimum at $y=1$. Therefore, $h(y) \geq 0$ for all $y\geq 0$, which proves $(\star)$. Then, using $(\star)$ with $y=\frac{\pi(x)}{\sigma(x)}$,​ and taking $\bar f=f-\mu(f)$ where $\mu=2\pi/3 +\sigma/3$,+Indeed, set $h(y)=\frac{2}{3}(2y+1)(-\log y+y-1)-(y-1)^2$ and check that $h(1)=h'​(1)=0$ and $h''​(y)=2(y-1)^2/​(3y^2)>​0$ for all $y \geq 0$. Therefore, $h$ is a convex function on $\rset^+$ and attains its minimum at $y=1$. Therefore, $h(y) \geq 0$ for all $y\geq 0$, which proves $(\star)$. Then, using $(\star)$ with $y=\frac{\pi(x)}{\sigma(x)}$,​ and taking $\bar f=f-\mu(f)$ where $\mu=2\pi/3 +\sigma/3$,
  
 \begin{align*} ​ \begin{align*} ​
Line 37: Line 37:
 \left(\int ​ |\bar f(x)|\ |\sigma(x)-\pi(x)|\rmd x\right)^2 \\ \left(\int ​ |\bar f(x)|\ |\sigma(x)-\pi(x)|\rmd x\right)^2 \\
 &​=\left(\int |\bar f(x)|\ \sigma(x)\ |\frac{\pi(x)}{\sigma(x)}-1|\rmd x\right)^2 \\  &​=\left(\int |\bar f(x)|\ \sigma(x)\ |\frac{\pi(x)}{\sigma(x)}-1|\rmd x\right)^2 \\ 
-&=\left(\int \sigma(\rmd x) \sqrt{\frac{2\bar f^2(x)}{3}\left(2\frac{\pi(x)}{\sigma(x)}+1\right)} \sqrt{\left( -\log \frac{\pi(x)}{\sigma(x)}+&\leq\left(\int \sigma(\rmd x) \sqrt{\frac{2\bar f^2(x)}{3}\left(2\frac{\pi(x)}{\sigma(x)}+1\right)} \sqrt{\left( -\log \frac{\pi(x)}{\sigma(x)}
 +\frac{\pi(x)}{\sigma(x)}-1\right)}\right)^2 \end{align*} And we conclude by applying Holder'​s inequality: $\left(\int \sigma(\rmd x) \sqrt{a(x)}\sqrt{b(x)} \right)^2\leq \int \sigma(\rmd x) a(x) \times \int \sigma(\rmd x) b(x)$ $\eproof$ +\frac{\pi(x)}{\sigma(x)}-1\right)}\right)^2 \end{align*} And we conclude by applying Holder'​s inequality: $\left(\int \sigma(\rmd x) \sqrt{a(x)}\sqrt{b(x)} \right)^2\leq \int \sigma(\rmd x) a(x) \times \int \sigma(\rmd x) b(x)$ $\eproof$
  
  
world/pinsker.1647412823.txt.gz · Last modified: 2022/03/16 07:40 by 127.0.0.1