Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:minkovski

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:minkovski [2025/01/29 09:39]
rdouc [Proof]
world:minkovski [2025/01/29 09:44] (current)
rdouc [Proof]
Line 12: Line 12:
 Then,  Then, 
 $$\varphi'​(s) = \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \int (f + s g)^{p-1} g \, \rmd \mu.$$ ​ $$\varphi'​(s) = \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \int (f + s g)^{p-1} g \, \rmd \mu.$$ ​
-Using Hölder’s inequality, we can bound $\varphi'​(s)$ as follows: ​+Using Hölder’s inequality ​for the second term, we can bound $\varphi'​(s)$ as follows: ​
 $$\varphi'​(s) \leq \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \lr{\int (f + s g)^p \rmd \mu}^{\frac{p-1}{p}} \lr{\int g^p \rmd \mu}^{1/p} = \lr{\int g^p \rmd \mu}^{1/​p}.$$ ​ $$\varphi'​(s) \leq \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \lr{\int (f + s g)^p \rmd \mu}^{\frac{p-1}{p}} \lr{\int g^p \rmd \mu}^{1/p} = \lr{\int g^p \rmd \mu}^{1/​p}.$$ ​
-Integrating $\varphi'​(s)$ from $0$ to $1$we obtain ​$$\lr{\int (f + g)^p \rmd \mu}^{1/p} - \lr{\int f^p \rmd \mu}^{1/p} = \varphi(1) ​\varphi(0) ​\int_0^1 \varphi'​(s) \, \rmd s \leq \lr{\int g^p \rmd \mu}^{1/​p}.$$ This completes the proof. +Hence, 
 +$$\lr{\int (f + g)^p \rmd \mu}^{1/p} = \varphi(1) ​\varphi(0) ​\int_0^1 \varphi'​(s) \, \rmd s \leq \lr{\int f^p \rmd \mu}^{1/​p}+ ​\lr{\int g^p \rmd \mu}^{1/​p}.$$ This completes the proof. 
  
  
world/minkovski.1738139952.txt.gz · Last modified: 2025/01/29 09:39 by rdouc