This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
world:minkovski [2025/01/29 09:34] rdouc [Proof] |
world:minkovski [2025/01/29 09:44] (current) rdouc [Proof] |
||
---|---|---|---|
Line 6: | Line 6: | ||
===== Proof ===== | ===== Proof ===== | ||
- | Without loss of generality, we assume that $f, g \in \lp{p}(\mu)$ and $f, g \geq 0$ (the general case can be handled using the inequality $|f+g| \leq |f| + |g|$). For $s > 0$, define | + | Some alternative proofs can be found [[https://en.wikipedia.org/wiki/Minkowski_inequality|here]]. |
+ | |||
+ | Without loss of generality, we assume that $p>1$, $f, g \in \lp{p}(\mu)$ and $f, g \geq 0$ (the general case can be handled using the inequality $|f+g| \leq |f| + |g|$). For $s > 0$, define | ||
$$\varphi(s) = \lr{\int (f + s g)^p \rmd \mu}^{1/p}.$$ | $$\varphi(s) = \lr{\int (f + s g)^p \rmd \mu}^{1/p}.$$ | ||
Then, | Then, | ||
$$\varphi'(s) = \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \int (f + s g)^{p-1} g \, \rmd \mu.$$ | $$\varphi'(s) = \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \int (f + s g)^{p-1} g \, \rmd \mu.$$ | ||
- | Using Hölder’s inequality, we can bound $\varphi'(s)$ as follows: | + | Using Hölder’s inequality for the second term, we can bound $\varphi'(s)$ as follows: |
$$\varphi'(s) \leq \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \lr{\int (f + s g)^p \rmd \mu}^{\frac{p-1}{p}} \lr{\int g^p \rmd \mu}^{1/p} = \lr{\int g^p \rmd \mu}^{1/p}.$$ | $$\varphi'(s) \leq \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \lr{\int (f + s g)^p \rmd \mu}^{\frac{p-1}{p}} \lr{\int g^p \rmd \mu}^{1/p} = \lr{\int g^p \rmd \mu}^{1/p}.$$ | ||
- | Integrating $\varphi'(s)$ from $0$ to $1$, we obtain $$\lr{\int (f + g)^p \rmd \mu}^{1/p} - \lr{\int f^p \rmd \mu}^{1/p} = \varphi(1) - \varphi(0) = \int_0^1 \varphi'(s) \, \rmd s \leq \lr{\int g^p \rmd \mu}^{1/p}.$$ This completes the proof. | + | Hence, |
+ | $$\lr{\int (f + g)^p \rmd \mu}^{1/p} = \varphi(1) = \varphi(0) + \int_0^1 \varphi'(s) \, \rmd s \leq \lr{\int f^p \rmd \mu}^{1/p}+ \lr{\int g^p \rmd \mu}^{1/p}.$$ This completes the proof. | ||