Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:minkovski

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
world:minkovski [2025/01/29 09:31]
rdouc created
world:minkovski [2025/01/29 09:44] (current)
rdouc [Proof]
Line 1: Line 1:
 {{page>:​defs}} {{page>:​defs}}
 +
 +====== Minkovski'​s inequality ======
  
 Let $f, g: \Xset \to \rset$ be two measurable functions on a measurable space $(\Xset, \Xsigma)$, and let $\mu$ be a non-negative measure on $(\Xset, \Xsigma)$. Then, for any $p \geq 1$, $$\lr{\int |f+g|^p \rmd \mu}^{1/p} \leq \lr{\int |f|^p \rmd \mu}^{1/p} + \lr{\int |g|^p \rmd \mu}^{1/​p}.$$ Let $f, g: \Xset \to \rset$ be two measurable functions on a measurable space $(\Xset, \Xsigma)$, and let $\mu$ be a non-negative measure on $(\Xset, \Xsigma)$. Then, for any $p \geq 1$, $$\lr{\int |f+g|^p \rmd \mu}^{1/p} \leq \lr{\int |f|^p \rmd \mu}^{1/p} + \lr{\int |g|^p \rmd \mu}^{1/​p}.$$
  
 +===== Proof =====
 +Some alternative proofs can be found [[https://​en.wikipedia.org/​wiki/​Minkowski_inequality|here]]. ​
  
-//​Proof.// ​Without loss of generality, we assume that $f, g \in \lp{p}(\mu)$ and $f, g \geq 0$ (the general case can be handled using the inequality $|f+g| \leq |f| + |g|$). For $s > 0$, define $$\varphi(s) = \lr{\int (f + s g)^p \rmd \mu}^{1/​p}.$$ Then, the derivative of $\varphi$ with respect to $s$ is $$\varphi'​(s) = \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \int (f + s g)^{p-1} g \, \rmd \mu.$$ Using Hölder’s inequality, we can bound $\varphi'​(s)$ as follows: $$\varphi'​(s) \leq \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \lr{\int (f + s g)^p \rmd \mu}^{\frac{p-1}{p}} \lr{\int g^p \rmd \mu}^{1/p} = \lr{\int g^p \rmd \mu}^{1/​p}.$$ ​Integrating $\varphi'​(s)$ from $0$ to $1$we obtain ​$$\lr{\int (f + g)^p \rmd \mu}^{1/p} - \lr{\int f^p \rmd \mu}^{1/p} = \varphi(1) ​\varphi(0) ​\int_0^1 \varphi'​(s) \, \rmd s \leq \lr{\int g^p \rmd \mu}^{1/​p}.$$ This completes the proof. +Without loss of generality, we assume that $p>​1$, ​$f, g \in \lp{p}(\mu)$ and $f, g \geq 0$ (the general case can be handled using the inequality $|f+g| \leq |f| + |g|$). For $s > 0$, define ​ 
 +$$\varphi(s) = \lr{\int (f + s g)^p \rmd \mu}^{1/​p}.$$ ​ 
 +Then,  
 +$$\varphi'​(s) = \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \int (f + s g)^{p-1} g \, \rmd \mu.$$ ​ 
 +Using Hölder’s inequality ​for the second term, we can bound $\varphi'​(s)$ as follows: ​ 
 +$$\varphi'​(s) \leq \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \lr{\int (f + s g)^p \rmd \mu}^{\frac{p-1}{p}} \lr{\int g^p \rmd \mu}^{1/p} = \lr{\int g^p \rmd \mu}^{1/​p}.$$ ​ 
 +Hence, 
 +$$\lr{\int (f + g)^p \rmd \mu}^{1/p} = \varphi(1) ​\varphi(0) ​\int_0^1 \varphi'​(s) \, \rmd s \leq \lr{\int f^p \rmd \mu}^{1/​p}+ ​\lr{\int g^p \rmd \mu}^{1/​p}.$$ This completes the proof. 
  
  
world/minkovski.1738139515.txt.gz · Last modified: 2025/01/29 09:31 by rdouc