Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:minkovski

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
world:minkovski [2025/01/29 09:43]
rdouc [Proof]
world:minkovski [2025/01/29 09:44] (current)
rdouc [Proof]
Line 15: Line 15:
 $$\varphi'​(s) \leq \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \lr{\int (f + s g)^p \rmd \mu}^{\frac{p-1}{p}} \lr{\int g^p \rmd \mu}^{1/p} = \lr{\int g^p \rmd \mu}^{1/​p}.$$ ​ $$\varphi'​(s) \leq \lr{\int (f + s g)^p \rmd \mu}^{\frac{1}{p} - 1} \lr{\int (f + s g)^p \rmd \mu}^{\frac{p-1}{p}} \lr{\int g^p \rmd \mu}^{1/p} = \lr{\int g^p \rmd \mu}^{1/​p}.$$ ​
 Hence, Hence,
-$$\lr{\int (f + g)^p \rmd \mu}^{1/p} - \lr{\int f^p \rmd \mu}^{1/p} = \varphi(1) ​\varphi(0) ​\int_0^1 \varphi'​(s) \, \rmd s \leq \lr{\int g^p \rmd \mu}^{1/​p}.$$ This completes the proof. +$$\lr{\int (f + g)^p \rmd \mu}^{1/p} = \varphi(1) ​\varphi(0) ​\int_0^1 \varphi'​(s) \, \rmd s \leq \lr{\int f^p \rmd \mu}^{1/​p}+ ​\lr{\int g^p \rmd \mu}^{1/​p}.$$ This completes the proof. 
  
  
world/minkovski.txt · Last modified: 2025/01/29 09:44 by rdouc