Processing math: 2%

Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:max

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:max [2021/10/06 10:36]
rdouc [Proof]
world:max [2022/03/16 07:40] (current)
Line 14: Line 14:
 The function h is strictly convex and lim. This implies that h admits a unique minimizer The function h is strictly convex and \lim_{\beta \to \pm \infty}|h (x)|=\infty. This implies that h admits a unique minimizer
 \beta^\star. \beta^\star.
-  * \beta^\star\neq 0, in which case h' (\beta^\star)=0. This implies 2 (\beta^\star-u)+c \sgn(\beta^\star)=0. Therefore 2u=\sgn(\beta^\star)\lr{2|\beta^\star|+c},​ which implies \sgn (u)=\sgn (\beta^\star). Therefore 2 (\beta^\star-u)+c \sgn(u)=0+  * **Case 1**: \beta^\star\neq 0, in which case h' (\beta^\star)=0. This implies 2 (\beta^\star-u)+c \sgn(\beta^\star)=0. Therefore 2u=\sgn(\beta^\star)\lr{2|\beta^\star|+c},​ which implies \sgn (u)=\sgn (\beta^\star). Therefore 2 (\beta^\star-u)+c \sgn(u)=0
   from which we deduce \beta^\star=u \lr{1-\frac{c}{2|u|}}. Using again \sgn (u)=sgn (\beta^\star),​ we deduce ​ 1-\frac{c}{2|u|}\geq 0 and finally,   from which we deduce \beta^\star=u \lr{1-\frac{c}{2|u|}}. Using again \sgn (u)=sgn (\beta^\star),​ we deduce ​ 1-\frac{c}{2|u|}\geq 0 and finally,
 $$ $$
 \beta^\star=u \lr{1-\frac{c}{2|u|}}^+ \beta^\star=u \lr{1-\frac{c}{2|u|}}^+
 $$ $$
-  * \beta^\star= 0. In this case, for all \beta \neq 0, h (\beta) \geq h (0)=u^2, which is equivalent to \beta^2-2 \beta u+c|\beta|\geq 0. Dividing by |\beta| and letting \beta\to 0, we get -2 u\sgn(\beta)+c \geq 0 which in turn implies -2|u|+c\geq 0. This shows 1-\frac{c}{2|u|}\leq 0 and we therefore have again:+  * **Case 2**: \beta^\star= 0. In this case, for all \beta \neq 0, h (\beta) \geq h (0)=u^2, which is equivalent to \beta^2-2 \beta u+c|\beta|\geq 0. Dividing by |\beta| and letting \beta\to 0, we get -2 u\sgn(\beta)+c \geq 0 which in turn implies -2|u|+c\geq 0. This shows 1-\frac{c}{2|u|}\leq 0 and we therefore have again:
 $$ $$
 \beta^\star=0=u \lr{1-\frac{c}{2|u|}}^+ \beta^\star=0=u \lr{1-\frac{c}{2|u|}}^+
 $$ $$
  
world/max.1633509405.txt.gz · Last modified: 2022/03/16 01:37 (external edit)