Processing math: 8%

Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:martingale

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:martingale [2021/03/20 08:00]
rdouc [Proof]
world:martingale [2022/03/16 07:40] (current)
Line 1: Line 1:
 {{page>:​defs}} {{page>:​defs}}
  
-====== Statement: Martingale ​convergence results ======+===== Supermartingale ​convergence results ===== 
  
 <WRAP center round tip 80%> <WRAP center round tip 80%>
 **__Theorem__**. ​ **__Theorem__**. ​
-Let \mcf=(\mcfn)n\nset be a filtration and let \seqXnn\nset be an \mcf-adapted sequence such that +Let \mcf=(\mcfn)n\nset be a filtration and let \seqXnn\nset be an \mcf-adapted sequence ​of \lone-random variables ​such that 
   *  M=\sup_{n\in\nset} \PE[(X_n)^-]<​\infty   *  M=\sup_{n\in\nset} \PE[(X_n)^-]<​\infty
   *  for all n\geq 1, we have \PE[X_{n}|\mcf_{n-1}]\leq X_{n-1}. ​     *  for all n\geq 1, we have \PE[X_{n}|\mcf_{n-1}]\leq X_{n-1}. ​  
 that is, \seq{X_n}{n\in\nset} is a (\mcf_n)_{n\in\nset}-supermartingale,​ with negative part bounded in \lone. ​ that is, \seq{X_n}{n\in\nset} is a (\mcf_n)_{n\in\nset}-supermartingale,​ with negative part bounded in \lone. ​
-Then, almost surely, X_\infty=\lim_{n\to\infty} X_n exists and is finite.+Then, almost surely, X_\infty=\lim_{n\to\infty} X_n exists and is in \lone.
  
 </​WRAP>​ </​WRAP>​
Line 15: Line 16:
  
  
-===== Proof =====+==== Proof ====
  
 Let a<b and define ​ C_1=\indiacc{X_0<​a} and for n\geq 2 Let a<b and define ​ C_1=\indiacc{X_0<​a} and for n\geq 2
 $$ $$
-C_n=\indiacc{C_{n-1}=1,​X_{n-1} \leq b}+\indiacc{C_{n-1}=0,​X_{n-1} ​\leq a}+C_n=\indiacc{C_{n-1}=1,​X_{n-1} \leq b}+\indiacc{C_{n-1}=0,​X_{n-1} ​a}
 $$ $$
 In words, the first time C_n flags 1 is when X_{n-1}<​a. Then it flags 1 until X_{n-1} goes above b. Then it flags 0 until X_n goes below a. So consecutive sequences of C_n=1 are linked with upcrossings of [a,b] for (X_n) . Now, define ​ In words, the first time C_n flags 1 is when X_{n-1}<​a. Then it flags 1 until X_{n-1} goes above b. Then it flags 0 until X_n goes below a. So consecutive sequences of C_n=1 are linked with upcrossings of [a,b] for (X_n) . Now, define ​
Line 26: Line 27:
 $$ $$
  
-Define $U_N[a,b](\omega) the number of upcrossings of [a,b] for (X_n)_{0\leq n \leq  } $. Then, +Define U_N[a,b] the number of upcrossings of [a,b] for $(X_n)_{0\leq n \leq } $. Then, 
 $$ $$
 Y_N=\sum_{k=1}^N C_k(X_k-X_{k-1}) \geq (b-a) U_N[a,​b]-(X_N-a)^- Y_N=\sum_{k=1}^N C_k(X_k-X_{k-1}) \geq (b-a) U_N[a,​b]-(X_N-a)^-
Line 43: Line 44:
   & \leq \sum_{a,​b\in \mathbb{Q}, a<​b} ​ \PP(U_\infty[a,​b]=\infty)=0   & \leq \sum_{a,​b\in \mathbb{Q}, a<​b} ​ \PP(U_\infty[a,​b]=\infty)=0
 \end{align*} \end{align*}
-which completes the proof.  +which shows that X_\infty=\lim_{n \to \infty} X_n exits almost surely.  
-===== Corollary =====+ 
 +Moreover, \PE[X_0] \geq \PE[X_n]=\PE[X^+_n]-\PE[X^-_n] so that 
 +$$ 
 +\sup_n \PE[|X_n|]=\sup_n \lr{\PE[X^+_n]+\PE[X^-_n]} ​ \leq \PE[X_0] +2 \sup_n \PE[X^-_n] \leq \PE[X_0] +2 M<​\infty ​  
 +$$ 
 +which implies by Fatou'​s lemma that \PE[|X_\infty|]=\PE[\liminf_{n}|X_n|] \leq \liminf_{n} \PE[|X_n|] \leq \sup_n ​  ​\PE[|X_n|]<​\infty. The proof is completed
 +===== Corollary: Submartingale convergence results ​=====
    
 {{anchor:​submartingale:​}} {{anchor:​submartingale:​}}
Line 50: Line 57:
  
 <WRAP center round tip 80%> <WRAP center round tip 80%>
-**__Corollary__** Assume that \mcf=(\mcf_n)_{n\in\nset} is a filtration and let \seq{X_n}{n\in\nset} be an \mcf-adapted sequence such that +**__Corollary__** Assume that \mcf=(\mcf_n)_{n\in\nset} is a filtration and let \seq{X_n}{n\in\nset} be an \mcf-adapted sequence ​of \lone random variables ​such that 
   * M=\sup_{n\in\nset} \PE[(X_n)^+]<​\infty   * M=\sup_{n\in\nset} \PE[(X_n)^+]<​\infty
   * for all n\geq 1, we have \PE[X_{n}|\mcf_{n-1}]\geq X_{n-1}.   * for all n\geq 1, we have \PE[X_{n}|\mcf_{n-1}]\geq X_{n-1}.
 that is, \seq{X_n}{n\in\nset} is a \mcf-submartingale,​ with positive part bounded in \lone. ​ that is, \seq{X_n}{n\in\nset} is a \mcf-submartingale,​ with positive part bounded in \lone. ​
-Then, almost surely, X_\infty=\lim_{n\to\infty} X_n exists and is finite.+Then, almost surely, X_\infty=\lim_{n\to\infty} X_n exists and is in \lone.
  
 </​WRAP>​ </​WRAP>​
        
  
world/martingale.1616223648.txt.gz · Last modified: 2022/03/16 01:37 (external edit)