Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:log-sobolev

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
world:log-sobolev [2025/07/09 10:52]
rdouc created
world:log-sobolev [2025/07/09 11:02] (current)
rdouc [Concentration inequalities and logarithmic Sobolev inequality]
Line 1: Line 1:
-====== ​Concentration inequalities and logarithmic ​Sobolev inequality ======+====== ​Logarithmic ​Sobolev inequality ​and concentration ​====== 
 +$\newcommand{\Ent}{\mathrm{Ent}}$
  
-**Theorem.** Let $\mu$ be a probability measure on $\mathbb{R}^n$ satisfying the following logarithmic Sobolev inequality:+====== Theorem ====== 
 +  ​Taken from Thm 7.4.1 in the book "Sur les inégalités de Sobolev logarithmiques"​. 
 + 
 +<WRAP center round tip 80%> 
 +Let $\mu$ be a probability measure on $\mathbb{R}^n$ satisfying the following logarithmic Sobolev inequality:
 $$ $$
 \forall f \in C_b^\infty(\mathbb{R}^n),​ \quad \Ent_\mu(f^2) \leq c \, \mathbb{E}_\mu(|\nabla f|^2), \forall f \in C_b^\infty(\mathbb{R}^n),​ \quad \Ent_\mu(f^2) \leq c \, \mathbb{E}_\mu(|\nabla f|^2),
Line 11: Line 16:
 $$ $$
  
-**Proof.**  ​+</​WRAP>​ 
 + 
 +===== Proof. ​===== 
 We first assume that $F$ is a smooth and bounded function such that $\|F\|_{\mathrm{Lip}} \leq 1$. Consider the Laplace transform of $F$: We first assume that $F$ is a smooth and bounded function such that $\|F\|_{\mathrm{Lip}} \leq 1$. Consider the Laplace transform of $F$:
 $$ $$
world/log-sobolev.1752051133.txt.gz · Last modified: 2025/07/09 10:52 by rdouc