Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:kkt

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:kkt [2025/10/07 01:36]
rdouc old revision restored (2022/10/03 00:23)
world:kkt [2025/10/08 02:30] (current)
rdouc
Line 10: Line 10:
  
 ====== Weak duality ====== ====== Weak duality ======
-Let $f$ and $(h_i)_{1 \leq i \leq n}$ be convex differentiable functions on $\Xset=\rset^p$. Let $\mcD=\cap_{i=1}^n \{h_i \leq 0\}\neq \emptyset$ and note that by convexity of the functions $h_i$, the set $\mcD$ is actually a convex set. We are interested in the infimum of the convex function $f$ on the convex set $\mcD$. Define the Lagrange function+Let $f$ and $(h_i)_{1 \leq i \leq n}$ be convex differentiable functions on $\Xset=\rset^p$ with $\lim_{|x| \to \infty} f(x)=\infty$. Let $\mcD=\cap_{i=1}^n \{h_i \leq 0\}\neq \emptyset$ and note that by convexity of the functions $h_i$, the set $\mcD$ is actually a convex set. We are interested in the infimum of the convex function $f$ on the convex set $\mcD$. Define the Lagrange function
 $$ $$
 \mcl(x,​\lambda)=f(x)+\sum_{i=1}^n \lambda_i h_i(x) \mcl(x,​\lambda)=f(x)+\sum_{i=1}^n \lambda_i h_i(x)
Line 44: Line 44:
 \end{equation} \end{equation}
 and for all $i \in [1:n]$, we have either $\lambda^*_i=0$ or $h_i(x^*)=0$ .  and for all $i \in [1:n]$, we have either $\lambda^*_i=0$ or $h_i(x^*)=0$ . 
-Then, the strong duality holds and +Then, the <color /yellow>strong duality holds</​color> ​and 
 $$ $$
 f(x^*)=\inf_{x \in \mcD} f(x)=\mcl(x^*,​\lambda^*) f(x^*)=\inf_{x \in \mcD} f(x)=\mcl(x^*,​\lambda^*)
Line 105: Line 105:
 <WRAP center round box 80%> <WRAP center round box 80%>
 __**The convex Farkas lemma**__ ​ __**The convex Farkas lemma**__ ​
-Assume that there exists a Slater point. Then, $\{f<0\} \cap \mcD =\emptyset$ iff there exists $\lambda^* \geq 0$ such that for all $x\in \mcD$, $f(x)+\sum_{i=1}^n \lambda^*_i h_i(x) \geq 0$.+Assume that there exists a Slater point. Then, $\{f<0\} \cap \mcD =\emptyset$ iff there exists $\lambda^* \geq 0$ such that for all $x\in \Xset$, $f(x)+\sum_{i=1}^n \lambda^*_i h_i(x) \geq 0$.
 </​WRAP>​ </​WRAP>​
 +
 +
 <hidden Click here to see the proof> ​ <hidden Click here to see the proof> ​
 $\bproof$ $\bproof$
 Set  Set 
 $$ $$
-U=\{u=u_{0:​n} \in \rset^{n+1};​ \exists\ x \in \mcD, f(x)<u_0 \ \mbox{and} \ h_i(x)\leq u_i  \mbox{ for all } i \in [1:n]\}.+U=\{u=u_{0:​n} \in \rset^{n+1};​ \exists\ x \in \Xset, f(x)<u_0 \ \mbox{and} \ h_i(x)\leq u_i  \mbox{ for all } i \in [1:n]\}.
 $$ $$
 The condition $\{f<0\} \cap \mcD =\emptyset$ ​ is equivalent to saying that $0 \notin U$ and since $U$ is clearly a convex set, by a separation argument, there exists a __**non-null**__ vector $\phi \in \rset^{n+1}$ such that  The condition $\{f<0\} \cap \mcD =\emptyset$ ​ is equivalent to saying that $0 \notin U$ and since $U$ is clearly a convex set, by a separation argument, there exists a __**non-null**__ vector $\phi \in \rset^{n+1}$ such that 
Line 118: Line 120:
 \end{equation} \end{equation}
 Take an arbitrary $i \in [0:​n]$. ​ Take an arbitrary $i \in [0:​n]$. ​
-If $u\in U$ then $u+t e_i \in U$ where $t>0$ and $e_i=(\indiacc{k=i})_{k \in [0:n]} \in \rset^{n+1}$. ​ The previous inequality implies $\phi^T (u+t e_i)=\phi^T u + t\phi_i \geq 0$ for all $t>0$, therefore $\phi_i\geq 0$. Now, since $\phi^T u\geq 0$ for all $u \in U$, a simple limiting argument yields for all $x\in \mcD$, +If $u\in U$ then $u+t e_i \in U$ where $t>0$ and $e_i=(\indiacc{k=i})_{k \in [0:n]} \in \rset^{n+1}$. ​ The previous inequality implies $\phi^T (u+t e_i)=\phi^T u + t\phi_i \geq 0$ for all $t>0$, therefore $\phi_i\geq 0$. Now, since $\phi^T u\geq 0$ for all $u \in U$, a simple limiting argument yields for all $x\in \Xset$, 
 $$ $$
 \phi_0 f(x)+\sum_{i=1}^n \phi_i h_i(x) \geq 0 \phi_0 f(x)+\sum_{i=1}^n \phi_i h_i(x) \geq 0
Line 129: Line 131:
 <WRAP center round box 80%> <WRAP center round box 80%>
 __**The necessary condition**__ ​ __**The necessary condition**__ ​
-Assume that $f(x^*)=\inf_{x\in \mcD} f(x)$ for some $x^* \in\mcD$ and that there exists a Slater point. Then there exist $\lambda^* \geq 0$ such that $(x^*,​\lambda^*)$ is a saddle point and by the Saddle point lemma, the strong duality holds. ​+Assume that $f(x^*)=\inf_{x\in \mcD} f(x)$ for some $x^* \in\mcD$ and that there exists a Slater point. Then there exist $\lambda^* \geq 0$ such that $(x^*,​\lambda^*)$ is a saddle point and by the Saddle point lemma, the <color /yellow>strong duality holds</​color>​
 </​WRAP>​ </​WRAP>​
 <hidden Click here to see the proof> <hidden Click here to see the proof>
 $\bproof$ $\bproof$
-Assume now that $f(x^*)=\inf_{x\in \mcD} f(x)$ for some $x^* \in\mcD$. Then, $\{f-f(x^*)<​0\} \cap \mcD =\emptyset$ so that there exists $\lambda^* \geq 0$ satisfying for all $x\in \mcD$, $f(x)-f(x^*)+\sum_{i=1}^n \lambda^*_i h_i(x) \geq 0$. And this implies that $(x^*,​\lambda^*)$ is a saddle point since: for all $\lambda \geq 0$ and $x \in \mcD$, +Assume now that $f(x^*)=\inf_{x\in \mcD} f(x)$ for some $x^* \in\mcD$. Then, $\{f-f(x^*)<​0\} \cap \mcD =\emptyset$ so that there exists $\lambda^* \geq 0$ satisfying for all $x\in \Xset$, $f(x)-f(x^*)+\sum_{i=1}^n \lambda^*_i h_i(x) \geq 0$. And this implies that $(x^*,​\lambda^*)$ is a saddle point since: for all $\lambda \geq 0$ and $x \in \Xset$, 
 $$ $$
 f(x^*)+\sum_{i=1}^n \lambda_i h_i(x^*) \leq f(x^*) \leq f(x)+\sum_{i=1}^n \lambda^*_i h_i(x) ​ f(x^*)+\sum_{i=1}^n \lambda_i h_i(x^*) \leq f(x^*) \leq f(x)+\sum_{i=1}^n \lambda^*_i h_i(x) ​
world/kkt.1759793797.txt.gz · Last modified: 2025/10/07 01:36 by rdouc