This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
world:hewitt-savage [2026/02/06 11:56] rdouc [Proof of the Hewitt-Savage 0-1 Law] |
world:hewitt-savage [2026/02/06 13:06] (current) rdouc |
||
|---|---|---|---|
| Line 59: | Line 59: | ||
| **Step 3: Independence and Expectation** | **Step 3: Independence and Expectation** | ||
| Introduce the intermediate quantities \(\mathsf{1}_{\bar{B}}(X_{1:n})\) and \(\mathsf{1}_{\bar{B}}(X_{n+1:2n})\) which are independent by independence of \((X_i)\). Then, we obtain: | Introduce the intermediate quantities \(\mathsf{1}_{\bar{B}}(X_{1:n})\) and \(\mathsf{1}_{\bar{B}}(X_{n+1:2n})\) which are independent by independence of \((X_i)\). Then, we obtain: | ||
| - | \[ | + | $$ |
| - | |\mathbb{E}[\mathsf{1}_A \mathsf{1}_A] - \mathbb{E}[\mathsf{1}_A]\mathbb{E}[\mathsf{1}_A]| \leq 4\delta. | + | |\mathbb{E}[\mathsf{1}_A \mathsf{1}_A] - \mathbb{E}[\mathsf{1}_A]\mathbb{E}[\mathsf{1}_A]| \leq |\mathbb{E}[\mathsf{1}_A \mathsf{1}_A] - \mathbb{E}[\mathsf{1}_{\bar{B}}(X_{1:n})\mathsf{1}_{\bar{B}}(X_{n+1:2n})]| + | \mathbb{E}[\mathsf{1}_{\bar{B}}(X_{1:n})]\mathbb{E}[\mathsf{1}_{\bar{B}}(X_{n+1:2n})]- \mathbb{E}[\mathsf{1}_A] \mathbb{E} [\mathsf{1}_A]| \leq 4\delta. |
| - | \] | + | $$ |
| Since \(\delta > 0\) is arbitrary, we conclude that: | Since \(\delta > 0\) is arbitrary, we conclude that: | ||
| \[ | \[ | ||