Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:hewitt-savage

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
world:hewitt-savage [2026/02/05 15:20]
rdouc
world:hewitt-savage [2026/02/06 13:06] (current)
rdouc
Line 28: Line 28:
  
 **Key Idea:** **Key Idea:**
-We aim to establish the identity \(\mathbb{P}(A) = \mathbb{E}[\mathsf{1}_A \mathsf{1}_A] = \mathbb{E}[\mathsf{1}_A]^2 = \mathbb{P}(A)^2\). +We aim to establish the identity \(\mathbb{P}(A) = \mathbb{E}[\mathsf{1}_A \mathsf{1}_A] = \mathbb{E}[\mathsf{1}_A]^2 = \mathbb{P}(A)^2\). ​To do so, the idea is to approximate $\mathsf{1}_A$ by the indicators of two different independent events. ​
- +
  
 **Step 1: Approximation Lemma** **Step 1: Approximation Lemma**
Line 61: Line 59:
 **Step 3: Independence and Expectation** **Step 3: Independence and Expectation**
 Introduce the intermediate quantities \(\mathsf{1}_{\bar{B}}(X_{1:​n})\) and \(\mathsf{1}_{\bar{B}}(X_{n+1:​2n})\) which are independent by independence of \((X_i)\). Then, we obtain: Introduce the intermediate quantities \(\mathsf{1}_{\bar{B}}(X_{1:​n})\) and \(\mathsf{1}_{\bar{B}}(X_{n+1:​2n})\) which are independent by independence of \((X_i)\). Then, we obtain:
-\[ +$$ 
-|\mathbb{E}[\mathsf{1}_A \mathsf{1}_A] - \mathbb{E}[\mathsf{1}_A]\mathbb{E}[\mathsf{1}_A]| \leq 4\delta. +|\mathbb{E}[\mathsf{1}_A \mathsf{1}_A] - \mathbb{E}[\mathsf{1}_A]\mathbb{E}[\mathsf{1}_A]| \leq |\mathbb{E}[\mathsf{1}_A \mathsf{1}_A] - \mathbb{E}[\mathsf{1}_{\bar{B}}(X_{1:​n})\mathsf{1}_{\bar{B}}(X_{n+1:​2n})]| + | \mathbb{E}[\mathsf{1}_{\bar{B}}(X_{1:​n})]\mathbb{E}[\mathsf{1}_{\bar{B}}(X_{n+1:​2n})]- \mathbb{E}[\mathsf{1}_A] \mathbb{E} [\mathsf{1}_A]| \leq 4\delta. 
-\]+$$
 Since \(\delta > 0\) is arbitrary, we conclude that: Since \(\delta > 0\) is arbitrary, we conclude that:
 \[ \[
world/hewitt-savage.1770301241.txt.gz · Last modified: 2026/02/05 15:20 by rdouc