Welcome to Randal Douc's wiki

A collaborative site on maths but not only!

User Tools

Site Tools


world:hewitt-savage

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
world:hewitt-savage [2026/02/05 12:36]
rdouc created
world:hewitt-savage [2026/02/06 13:06] (current)
rdouc
Line 1: Line 1:
 ==== Hewitt-Savage 0-1 Law ==== ==== Hewitt-Savage 0-1 Law ====
  
-Let \((X_i)_{i\in\mathbb{N}}\) be a family of independent and identically distributed (i.i.d.) random variables defined on a common probability space and taking values in a measurable space \((\mathsf{X},​ \mathcal{X})\).+Let \((X_i)_{i\in\mathbb{N}}\) be a family of **independent and identically distributed (i.i.d.)** random variables defined on a common probability space and taking values in a measurable space \((\mathsf{X},​ \mathcal{X})\).
  
 **Equivalent Formulation:​** **Equivalent Formulation:​**
-We can also consider \(X_i\) as the coordinate projection associated with the probability space \((\mathsf{X}^\mathbb{N},​ \mathcal{X}^{\otimes\mathbb{N}},​ \mathbb{P})\),​ where, under \(\mathbb{P}\),​ the sequence \((X_i)\) is i.i.d.+We can also consider \(X_i\) as the coordinate projection associated with the probability space \((\mathsf{X}^\mathbb{N},​ \mathcal{X}^{\otimes\mathbb{N}},​ \mathbb{P})\),​ where, under \(\mathbb{P}\),​ the sequence \((X_i)\) is **i.i.d**.
  
 **Permutation-Invariant σ-Fields:​** **Permutation-Invariant σ-Fields:​**
-For any \(n \in \mathbb{N}\),​ let \(\mathcal{G}_n\) be the σ-field generated by measurable functions \(f: \mathsf{X}^\mathbb{N} \to \mathbb{R}\) that are invariant under any permutation of the first \(n\) coordinates. Define the tail σ-field as:+For any \(n \in \mathbb{N}\),​ let \(\mathcal{G}_n\) be the σ-field generated by measurable functions \(f: \mathsf{X}^\mathbb{N} \to \mathbb{R}\) that are invariant under any permutation of the first \(n\) coordinates. Define the σ-field ​$\mathcal{G}_\infty$ ​as:
 \[ \[
 \mathcal{G}_\infty = \bigcap_{n\in\mathbb{N}} \mathcal{G}_n,​ \mathcal{G}_\infty = \bigcap_{n\in\mathbb{N}} \mathcal{G}_n,​
Line 13: Line 13:
 which is generated by measurable functions invariant under any permutation of a finite number of coordinates. which is generated by measurable functions invariant under any permutation of a finite number of coordinates.
  
-**Hewitt-Savage 0-1 Law Statement:​** +<WRAP center round tip 80%> 
-We will prove that for any \(A \in \mathcal{G}_\infty\),​ \(\mathbb{P}(A) = 0\) or \(1\). This result is known as the **Hewitt-Savage 0-1 Law**.+**Statement:​** 
 +For any \(A \in \mathcal{G}_\infty\),​ \(\mathbb{P}(A) = 0\) or \(1\). ​ 
 + 
 +This result is known as the **Hewitt-Savage 0-1 Law**. 
 + 
 +</​WRAP>​
  
---- 
  
 ==== Proof of the Hewitt-Savage 0-1 Law ==== ==== Proof of the Hewitt-Savage 0-1 Law ====
Line 24: Line 28:
  
 **Key Idea:** **Key Idea:**
-We aim to establish the identity \(\mathbb{P}(A) = \mathbb{E}[\mathsf{1}_A \mathsf{1}_A] = \mathbb{E}[\mathsf{1}_A]^2 = \mathbb{P}(A)^2\). +We aim to establish the identity \(\mathbb{P}(A) = \mathbb{E}[\mathsf{1}_A \mathsf{1}_A] = \mathbb{E}[\mathsf{1}_A]^2 = \mathbb{P}(A)^2\). ​To do so, the idea is to approximate $\mathsf{1}_A$ by the indicators of two different independent events. ​
- +
----+
  
 **Step 1: Approximation Lemma** **Step 1: Approximation Lemma**
-Let \(\delta > 0\). By the approximation lemma, there exist \(n \in \mathbb{N}\) and a set \(B \in \mathcal{F}_n = \sigma(X_{1:​n})\) such that:+Let \(\delta > 0\). By the [[world:approximation-lemma|Approximation Lemma]], there exist \(n \in \mathbb{N}\) and a set \(B \in \mathcal{F}_n = \sigma(X_{1:​n})\) such that:
 \[ \[
 \mathbb{E}\left[|\mathsf{1}_A - \mathsf{1}_B|\right] \leq \delta. \mathbb{E}\left[|\mathsf{1}_A - \mathsf{1}_B|\right] \leq \delta.
Line 42: Line 44:
 \] \]
  
---- 
  
 **Step 2: Permutation Argument** **Step 2: Permutation Argument**
Line 54: Line 55:
 \] \]
  
----+
  
 **Step 3: Independence and Expectation** **Step 3: Independence and Expectation**
-Introduce the intermediate quantities \(\mathsf{1}_{\bar{B}}(X_{1:​n})\) and \(\mathsf{1}_{\bar{B}}(X_{n+1:​2n})\). By the independence of \((X_i)\) ​and the invariance of \(A\), we obtain: +Introduce the intermediate quantities \(\mathsf{1}_{\bar{B}}(X_{1:​n})\) and \(\mathsf{1}_{\bar{B}}(X_{n+1:​2n})\) ​which are independent by independence of \((X_i)\). Then, we obtain: 
-\[ +$$ 
-|\mathbb{E}[\mathsf{1}_A \mathsf{1}_A] - \mathbb{E}[\mathsf{1}_A]\mathbb{E}[\mathsf{1}_A]| \leq 4\delta. +|\mathbb{E}[\mathsf{1}_A \mathsf{1}_A] - \mathbb{E}[\mathsf{1}_A]\mathbb{E}[\mathsf{1}_A]| \leq |\mathbb{E}[\mathsf{1}_A \mathsf{1}_A] - \mathbb{E}[\mathsf{1}_{\bar{B}}(X_{1:​n})\mathsf{1}_{\bar{B}}(X_{n+1:​2n})]| + | \mathbb{E}[\mathsf{1}_{\bar{B}}(X_{1:​n})]\mathbb{E}[\mathsf{1}_{\bar{B}}(X_{n+1:​2n})]- \mathbb{E}[\mathsf{1}_A] \mathbb{E} [\mathsf{1}_A]| \leq 4\delta. 
-\]+$$
 Since \(\delta > 0\) is arbitrary, we conclude that: Since \(\delta > 0\) is arbitrary, we conclude that:
 \[ \[
Line 67: Line 68:
 which implies \(\mathbb{P}(A) = \mathbb{P}(A)^2\). Therefore, \(\mathbb{P}(A) \in \{0,1\}\). which implies \(\mathbb{P}(A) = \mathbb{P}(A)^2\). Therefore, \(\mathbb{P}(A) \in \{0,1\}\).
  
----+
 **Conclusion:​** **Conclusion:​**
 The Hewitt-Savage 0-1 Law states that any permutation-invariant event in the tail σ-field \(\mathcal{G}_\infty\) has probability 0 or 1. The Hewitt-Savage 0-1 Law states that any permutation-invariant event in the tail σ-field \(\mathcal{G}_\infty\) has probability 0 or 1.
  
world/hewitt-savage.1770291367.txt.gz · Last modified: 2026/02/05 12:36 by rdouc